Karl E. Peace
Ding-Geng Chen
Sandeep Menon Editors

Biopharmaceutical
— Applied Statistics
Symposium




Chapter 5 )
Designing and Analyzing Recurrent g
Event Data Trials

Stephan Ogenstad

5.1 Introduction

Recurrent event data analysis is common in clinical trials. Literature reviews indicate
that most statistical models used for such data are often based on time to the first
event or that events within a subject are considered to be independent. Even when
taking into account the dependence of the events within subjects, statistical analyses
are mostly done with continuous risk interval models, which may not be appropriate
for treatments with sustained effects. Furthermore, results can be biased in cases of a
confounding factor implying different risk exposure, e.g. in malaria transmission, if
subjects are located at zones showing different environmental factors implying dif-
ferent risk exposures (Sagara et al. 2014). Hence, in many prospective randomized
controlled clinical trials, events are recurrent, in the sense that the events involve
repeat occurrences of the same or different types of events over time. Typical event
data consist of times of occurrences of events and the types of events or states that
occur. Frequently, an event may be considered as a transition from one state to another
and, therefore, multistate models will often provide a relevant framework for event
history data. Event history analysis deals with inference for transition intensities and
transition probabilities in multistate models. This includes estimation and hypothesis
testing for these quantities and analysis of regression models where these quantities
are related to explanatory variables observed for the subjects under study. Multistate
models are defined by their transition intensities from which transition probabilities
may or may not be derived depending on the modeling assumptions. Multistate mod-
els are discussed from several points of view in the books and articles by Andersen
and Keiding (2002), Andersen et al. (1993), Blossfeld and Rohwer (1995), Courgeau
and Lelievre (1992), and Hougaard (1999, 2000), and Commenges (1999).
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116 S. Ogenstad

The recurrent events are health indicators that assess disease progression or ther-
apeutic effect when subjects are observed over a period of time. It is clinically mean-
ingful to consider whether the treatment a subject is receiving is expected to impact
the first event or subsequent events or both. In other words, does the intervention
increase the time to the first event or decrease the event number over the study
period? In many therapeutic areas, time to the first event is chosen to be the primary
endpoint, but this choice then ignores all events after the first one. It is true that
statistical approaches for recurrent event endpoints usually are more complex, with
less regulatory experience, though there are a number of indications where these end-
points are used, such as hospitalizations in cardiology, asthma and multiple sclerosis.
The recurrent event approaches are usually more statistically efficient as information
beyond the first event is used. When the follow-up time may be truncated by com-
peting terminal events, it is possible that a subject’s observation times may correlate
with the competing terminal events themselves, thus making the observation times
difficult to assess.

Flexible parametric models of time to the first event or survival can help us in a
number of ways. These types of models allow us to obtain estimates of the baseline
survival function and its uncertainty which vary smoothly over time. Prediction of
survival probabilities and differences, hazard rate functions, hazard differences and
ratios, time-dependent effects of covariates, and excess mortality rates in the context
of relative survival are just some of the possible outputs from these models.

There are a number of different methods that can be used to evaluate the effects
that different treatments can have on subjects in a controlled clinical trial. A few of the
methods are to study the ‘time to the first event’ for the subject, the ‘number of events’
observed for the subject during the time period that the subject is observed, marginal
models, special models with time-dependent covariates, and frailty (random-effects)
models. Random effects models are interesting, and our understanding of how they
work when applied is beginning to mature. Marginal models are relatively simple
to use, interpretable, and flexible, but all of them have limitations. Usually, these
models can be fit with standard software such as SAS, Stata and the R package.

In this chapter, we will initially spend some efforts on survival models, since these
models form a foundation of many recurrent event models. We are only considering
right-censored observations, that is when subjects are still alive at the end of the study
and we only have incomplete survival time observations. A crucial problem is whether
the available incomplete data enables us to make valid inference on parameters in the
multistate model for the complete data. The condition for this is known as independent
right-censoring and the interpretation is that a sample observed after independent
right-censoring is ‘representative’ of the population without censoring. This means
that subjects who are censored should have neither lower nor higher risk of future
events than subjects who are not censored. We will not cover events that affect trial
conduct, such as treatment switching after an event has occurred.
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5 Designing and Analyzing Recurrent Event Data Trials 117

5.2 Methods

5.2.1 Time to First Event

Let T denote a continuous non-negative random variable representing survival time,
with probability density function f(¢) and cumulative distribution function F(t) =
P(T < 1t). The survival function S(t) = P(T > ) = 1 —F (¢) expresses the probability of
a subject being alive at time ¢. The hazard rate function «(¢) = f(#)/S(¢) describes the
conditional probability of an event occurring at time ¢, given that the event has not
yet occurred. Models based on the hazard rate function can assess whether covariates
have an effect on the hazard. If we let A(r) = fot o(u)du denote the cumulative or
integrated hazard rate function then the survival function can be expressed as S(#) =
exp(—A(?)).

The simplest multistate model is a two-state model where a subject can transition
from being ‘alive’ (in state 0) to the absorbing state of being ‘dead’ (in state 1).
Sometimes what is happening to a subject is being viewed as being part of a Markov
process. The time it takes until this ‘absorbing state’ is reached (or the observational
period is censored) is the ‘survival time’. The survival time for a subject will here
in the most simple form consist of a random variable, say T, representing the time
from a given origin (time 0) to the occurrence of the event ‘death’ or we have the
knowledge that the observational period is censored. It is seen that S(¢) and F(¢),
respectively, correspond to the probabilities of being in state 0 or 1 at time ¢. If
every subject is assumed to be in state 0 at time O then F(¢) is also the transition
probability from state O to state 1 for the time interval from O to 7. In continuous time
the distribution of 7' may also be characterized by the hazard rate function transition
probability from state O to state 1 for the time interval from O to t. The hazard rate
function may be characterized by

P(T <t+dt|IT >1t)
dt

a(t) = —d log S(t)/dt = lim
dt—0

that is,

t

S(t) = exp —/a(u)du

0

Thus, «(.) is the transition hazard rate from state O to state 1, i.e., the instantancous
probability per time unit of going from state 0 to state 1.

The survival function is often estimated with the Kaplan-Meier (KM) curve (Aalen
et al. 2008). It is the most frequently used tool to describe what happened to the
subjects in each treatment group. From censored survival data we can easily estimate a
survival function by the KM estimator. Figure 5.1 shows KM survival curve estimates
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Fig. 5.1 KM survival curve estimates for time to death from cancer for two treatment groups
Placebo and Drug

for time to death from cancer for two treatment groups Placebo and Drug. The cancer
dataset that ships with the software Stata (cancer.dta) is used, but is entirely fictional.

The least precise parts of the KM curves get the most visual focus, i.e., the right-
hand parts of the curves towards the end of the study, where the fewest number of
subjects are at risk of the event of death. This is a general criticism of KM survival
curve estimates. Kaplan-Meier-type estimates are composed of a sequence of point
estimates of the survival functions that are highly serially correlated. Accordingly,
KM plots tend to display ‘runs’ of values that move away from and back toward the
general trend, giving an undulating appearance. This may make the curves difficult
to interpret and may lead to the overemphasis of local features (Royston and Lambert
2011).

The estimation of a hazard rate function is more difficult. What can easily be
done is to estimate the cumulative hazard rate function A(z) = fol o(u)du using the
Nelson-Aalen estimator. Figure 5.2 shows the Nelson-Aalen estimates for the same
two treatment groups Placebo and Drug described previously.

If the increments of a Nelson-Aalen estimate are smoothed then the new estimates
may be used to provide estimates of the hazard rate function themselves. Below are
estimates of the hazard rate functions after smoothing of the Nelson-Aalen estimates
for the two treatment groups Placebo and Drug (Fig. 5.3).

The smoothing options will, of course, affect the shape of the hazard estimates.
We will later on in this chapter show alternative ways of estimating the survival,
cumulative hazard and hazard rate functions.
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Fig. 5.2 Nelson-Aalen estimates for time to death from cancer for two treatment groups Placebo
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Fig. 5.3 Estimates of the hazard rate functions based on smoothed Nelson-Aalen estimates for time
to death from cancer for two treatment groups Placebo and Drug
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5.2.1.1 The Cox Proportional Hazards Model

Modeling of censored survival data has since the 1970’s almost always been done
by the use of the Cox proportional-hazards regression model. The model is in its
original form semi-parametric. The hazard rate function for the Cox proportional
hazard model (Cox 1972) has the form

a(t|z;) = po(t) exp(Bizi1 + Paziz + - . . + Bpzip) = po(t) exp(z;P)

which gives the hazard rate at time ¢ for subject i with covariate vector z; and parameter
vector B. The baseline hazard py(¢) is arbitrary, which in one sense is scientifically
comforting, though the function does not extrapolate any information beyond that.
An underlying assumption of the Cox model is that the estimated parameters are not
associated with time.

Ignoring ties at the moment and conditioning on the existence of a unique event
at some particular time ¢ the probability that the event occurs in subject i for which
C; = 1 (uncensored) and T'; =t is

0
Lp)==—F
> JiT>T; 0;
where 6; = exp(z/jB). Treating the subjects’ events as if they were statistically

independent, the joint probability of all realized events conditioned upon the existence
of events at those times is the partial likelihood

L= ]«

iCi=1 Zj;rjzr,- 9]’

Its log partial likelihood is

IB)y= > |zB—log ) 0

i:Ci=1 J:Ti>T;

This function can be maximized over f to produce maximum partial likelihood
estimates of the model parameters.

Several approaches have been proposed to handle situations in which there are
ties in the time data. The partial likelihood for recurrent failure times is the case
when two or more subjects are recorded as dying at the same time. Breslow (1975)
developed a method that is the default for many statistical software packages, but it
is not the default for the R package. Breslow’s method uses the partial likelihood,
expressed as
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L Tenuy ¢

_ jeD(q) Pi
L® =[] o)

i=1 (ZjeR(t(,-)) ¢j>

where |D(#)| is the number of subjects that fail at time 7.

Breslow’s method describes the approach in which the procedure described above
is used unmodified, even when ties are present. An alternative approach that is con-
sidered to give better results is Efron’s method (Efron 1974). The Cox model may be
specialized if a reason exists to assume that the baseline hazard follows a particular
form. In this case, the baseline hazard pg(¢) is replaced by that particular function.
An alternative to Cox’s model is the additive regression model due to Aalen (Aalen
et al. 2008), which assumes that the hazard rate of a subject i with p covariates z;|,
..., Zjp takes the form

a(tlz;) = Bo(t) + B1(H)zi1 + ... + Bp(D)zip.

For this model Bo(¢) is the baseline hazard, while the regression functions B;(t)
describe how the covariates affect the hazard rate at time . For the Cox and additive
regression model hazard rate functions, the covariates are assumed to be fixed over
time. More generally, one may consider covariates that vary over time (Aalen et al.
2008). The generic term parametric proportional hazards models can be used to
describe proportional hazards models in which the hazard rate function is specified.
The Cox proportional hazards model is sometimes called a semiparametric model
by contrast.

The R package uses Efron’s partial likelihood, as it is considered a closer approx-
imation to the exact partial likelihood. Efron’s partial likelihood has the following
shape

1
L(B) _ l_[ HjeD(t(,)) ¢J
! 1—[|D(f(i))| Z ¢_ k—1 Z ¢
i=1 | lk=1 JERW) ¥ ™ D) £4~jeD(y) Vi

An extension of the proportional hazards model is to allow for multiple strata in
the fitting procedure. That is, we assume that the subjects can be broken into multiple
groups, and the hazard rate function for subjects in the kth group is

pok (1) exp(z;B).

A common use of stratification is in multicenter trials. Because of different subject
populations and referral patterns, different centers in the trial may have quite different
hazard rates, yet a common treatment effect across centers. In this way, strata play
a similar role to multiple intercept terms in an analysis of covariance model. Each
baseline hazard captures the baseline rate for an event. When events are of different
types, we have in reality different baselines. If we, for instance, are studying heart
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Fig. 5.4 KM and Cox model estimates for time to death from cancer for two treatment groups
Placebo and Drug

attacks, are the first and second heart attacks the same type of event? Well, we would
only know if we investigate it.

The Kaplan-Meier and Cox estimation provide estimates of the survival functions.
Continuing to use our cancer data, Fig. 5.4 displays the KM and Cox model estimates.

5.2.1.2 Extending the Cox Model for the Two-State Case

The main purpose of the Cox model in its simplest form is to estimate hazard rates
assuming that the hazards are proportional to each other. Because the model can
be embedded in a counting process framework (Andersen et al. 1997), the model
can be extended in many different ways to answer questions across a wide range of
situations, where we need to obtain informative estimates of quantities that include
hazard rates and their differences and ratios, survival curves and their differences,
rates, and survival at given time points. By ‘informative’ we mean unbiased estimates
that are smooth functions.

Parametric survival models generally provide smooth estimates of the hazard and
survival functions for any combination of covariate values. The exponential model
is often used when planning a clinical trial and for calculating the power and sample
sizes. Though, the exponential survival model is a rather unrealistic model since it
is assumed that the hazard rate function is constant over the whole observational
study period. This model can be generalized by splitting the observational period
into intervals. The choice of the number of intervals and where to place the cutpoints
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is of course subjective. With the piecewise exponential model, the time scale is split
into several intervals, where we assume that the hazard rate function is constant
within each interval but can vary from interval to interval. The hazard rate function
for the piecewise exponential model can be written h;;(¢, z;) = o exp(z;p), where
the subscript i is for subject and j is for the interval. Modeling the data with the
Poisson approach allows us to think about survival time in a different way from that
in standard survival analysis. Usually, survival time is considered to be the outcome
variable and we have to use special methods to account for the censoring process. With
the Poisson approach, it becomes clearer that we are modeling rates. We have a binary
variable as an outcome, and our models investigate variation in the corresponding
rates. There are many factors that cause systematic variation in rates, for example,
age and gender, but also time. In the Poisson framework, we can, therefore, consider
time to be a covariate, as opposed to a response. Thus we can adjust for time just as
we would for any other covariate. Time-dependent effects of a covariate of interest
are then simply an interaction between time and the covariate. The Poisson model
with a split at each unique failure time gives us the Cox model. However, we do not
want to fit a model with so many parameters. An important question is, what is the
effect of changing the number of time intervals of the parameters of interest (usually
log hazard ratios)? The problem with the piecewise exponential model is that if we
choose too few intervals we may miss important changes in the hazard rate; if we
choose too many, we end up with too many parameters, and the underlying shape of
the hazard rate is difficult to see because of random variation.

5.2.1.3 Royston-Parmar Models

The use of parametric models for the type of data we so far have considered may
have some advantages. The non-proportional hazards that are a potential difficulty
with the Cox model, could sometimes be handled in a simpler way, and the visualiza-
tion of the hazard rate function could be much easier. Royston—Parmar (RP) models
(Royston and Parmar 2002, Lambert and Royston 2009) have great flexibility with
respect to the shapes of the survival distributions they can model. Familiar standard
parametric survival models are the starting point for the generalizations called RP
models. Weibull, log logistic, and lognormal models can be generalized to propor-
tional hazards, proportional odds, and probit-scaled RP models, respectively. The
additional flexibility of RP models arises because the baseline distribution function
is represented as a restricted cubic spline function of log time instead of simply as
a linear function of log time. Modeling with spline functions generates some addi-
tional complexity. The additional complexity is determined by the number and the
positions of the connection points in log time, known as knots, of the spline’s cubic
polynomial segments. Estimation of parameters is by maximum likelihood. Quite
often, the characteristics of the fitted model are rather insensitive to the number and
particularly the position of the knots, lending a certain robustness to the process of
model selection. The restriction that the transformed survival function be linear in
Ln(t) is, in practice, severely limiting and is not really necessary. In RP models, we
may relax linearity and allow nonlinear functions. There are many possible fami-
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lies of nonlinear functions that we could use. Because cubic splines are flexible yet
relatively simple to work with and understand, Royston and Parmar (2002) chose
them as their preferred tool to extend standard models. The result is a major advance-
ment in the practical usefulness of parametric survival analysis and in the range of
applications that can be tackled.

In cancer survival trials, one often wants to know the impact of covariates on the
mortality rate for a particular cancer diagnosis. Since cancer is mostly a disease of
old age, many people may die of diseases other than the specific type of cancer they
were originally diagnosed with. Relative survival is a measure of patient survival
corrected for the effect of other causes of death by utilizing the patients’ expected
survival. Both Poisson models and Royston—Parmar (RP) models can be extended
to relative survival by incorporating information on expected survival or mortality.
Relative survival is related to the concept of competing risks (Gamel and Vogel
2001). We there assume that an individual is at risk of either dying of their cancer
or dying of another cause. In relative survival models, we can deal with this issue by
incorporating expected mortality, which can usually be obtained from routine data
sources. Traditionally, simple piecewise models have been used for relative survival,
but all the advantages of standard parametric survival models also apply to relative
survival models.

The baseline survival function in a Cox model is available only in the estimation
sample. To predict survival outside the estimation sample, we need special mea-
sures, such as interpolation or even extrapolation. Using special measures limits the
applications of the Cox model in some situations. An important case arises when we
wish to validate a survival model in an independent sample, a task that necessitates
out-of-sample prediction. There are at least two situations in which this is useful.
One is by interpolating or extrapolating the baseline or other survival functions at
time points not represented in the estimation sample. The other is by predicting sur-
vival probabilities or other quantities of interest from a model on a derivation sample
onto individuals in an evaluation sample (that is, external validation). Interpolation
is helpful, for instance, when we wish to plot a survival function for an individual,
a group, or a covariate pattern as a smooth curve at a suitable choice of time points
within the range of the observed follow-up time. We need the extrapolation when we
want to project a modeled survival function into the future. Successful external vali-
dation is usually regarded as the gold standard of potential usefulness of a proposed
prognostic model (Altman and Royston 2000).

The Hazard rate function is of utmost relevance in clinical medicine since it is
a decidedly meaningful measure of disease course, and is the basis against which
relative hazard effects are estimated. Fuchs et al. (1994) report on a double-blind ran-
domized multicenter clinical trial designed to assess the effect of rhDNase (purified
recombinant form of the human enzyme DNase I) versus placebo on the occurrence
of respiratory exacerbations among patients with cystic fibrosis. The subjects in these
treatment groups are susceptible to an accumulation of mucus in the lungs, which
leads to pulmonary exacerbations and deterioration of lung function. The occur-
rences of exacerbations over the study period were recorded for each subject. The
estimated hazard functions in the Fig. 5.5 are derived from the Cox model and the
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Fig. 5.5 Cox model and the Royston-Parmar model estimates under the proportional hazards
assumption from rhDNase data

Royston-Parmar model under the proportional hazards assumption. The thicker pair
of lines show estimates of the hazard rate functions from the Royston-Parmar model
and the thinner lines from the Cox model, using kernel smoothing, in the Placebo
and rhDNase groups, respectively.

The Royston-Parmar model gives a more plausible trajectory of the hazard for
the patients, then the rugged course that is shown from the estimates based on the
Cox model. In the RP model, the hazards seem to be highest about one month after
randomization and decreases after that time. The hazards are substantially reduced
by the rhDNase treatment. The proportional hazards condition forces the curves to be
proportional to each other. Even after 175 days the hazard in the rhDNase treatment
arm is still substantial but reduced by about one third. The fact that the curve does
not approach zero suggests that the disease is chronic. We have obtained quite a lot
of useful information. Even if we relax the proportional hazards assumption, the plot
of the ensuing hazard rate functions (not shown) are very similar to the thick lines
in the figure. So, our conclusion about the treatment effect seems to be robust.

The baseline hazard contains useful information. If we are told that the mortality
rate is double for subjects with a particular exposure, then we want to know what
reference value this doubling refers to. In a survival model, the reference is usually
the baseline hazard rate, which usually changes as a function of time. Thus even if the
proportional hazards assumption is reasonable, the impact of a particular exposure in
absolute terms depends on how long time has passed since the time origin (diagnosis,
randomization, start of treatment, etc.) and the magnitude of the underlying hazard
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Fig. 5.6 Estimated survival and hazard rate functions with confidence intervals, for time to death
from cancer for two treatment groups Placebo and Drug

rate. Flexible parametric survival models can help us in a number of ways. For
instance, these models allow us to obtain an estimate of the baseline survival function
and its uncertainty which vary smoothly over time.

We will illustrate (Fig. 5.6) the survival distributions and hazard functions using
nonparametric techniques (Kaplan—-Meier and smoothed hazard functions, respec-
tively) and a flexible parametric technique (Royston—Parmar models) using the cancer
dataset.

The survival curves indicate a median time to event of about 16-20 weeks. The
Kaplan—Meier curve shows a slight downturn after about 22 weeks, which is not
reflected in the survival curve from the Royston-Parmar estimates. The smoothed
nonparametric hazard estimate shows a corresponding upturn about 30 weeks.
Whether the feature is “real” or not is questionable—it seems surprising that the
event rate would start to increase after 18 weeks and then gradually turning down at
30 weeks, and then again from thereon shoot up. The pointwise confidence intervals
(CIs) from the smoothed hazard estimate are wider than that from the Royston-
Parmar. Conditional on a parsimonious parametric model, CIs are generally too
narrow because they do not take model uncertainty into account. Nonparametric
CIs make fewer assumptions and tend to be wider. Also, they are implicitly high-
dimensional and noisy.

The Royston-Parmar models can equally be used to perform multistate survival
analysis (Crowther 2016).
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5.2.2 Multiple Events Per Subject

5.2.2.1 Multistate Models

We have considered situations where each subject can only have one event. If death
is the outcome, then clearly it is not possible to have more than one event. However,
if the event is the recurrence of disease or readmission to hospital, then it is possible
for each subject to have more than one event. As a continuation of survival analysis,
we will consider another type of multivariate data in the setting of competing risks,
where 7'y, Ty, ..., Ty represent survival times to different causes of death. Estimation
of these models is complicated by the fact that we only observe T =min{T}, ..., T} }
where even T can be censored, so that none of the k£ events have occurred. Yet, another
type of multivariate data involves transitions among several types of states, where
some of them might be terminal, but not all. This combines elements of competing
risk models with models for series of events.

The framework for these types of models can be set up in the following way:
Suppose there is a total of m subjects accrued into a study and each subject is at risk
for a particular type of recurrent event. Let (0,7] represent the period of observation
and let N (u) be aright-continuous integer function representing the number of events
experienced by subject i over the interval (0, u],i =1, 2,...,m, 0 <u < 7. During the
observation period (0, ], some subjects may experience an event which terminates
their recurrent event processes (e.g. death), but subjects may also withdraw from the
study according to some random censoring mechanism which is independent of the
recurrent event and terminal event processes. For i = 1, ..., m, let T; be the time of
the terminating event, C; the censoring time, X; = min(7T’;, C;), w(t) = P(X; > ), and
8; =I(X; = dT;), where I(-) is an indicator function. We let N;(¢) = N/ {min(z, T;)}
denote the number of recurrent events observed over (0, ] in the presence of death.
The data contributed by each subject then take the form ({N; (u), 0<u < X;}, X;, §;),
i=1,...,m. Let Y;(t) = I(X; > t) be the at risk indicator function which is one when
subject i is under observation and at risk for an event at time ¢ and is zero otherwise.
We suppose initially that we have a single sample of subjects.

The most important class of models is the continuous time Markov process X(t)
on the finite state space S = {1,..., p} where the dependence of transition hazard rate
function o’ ;(1) on the history X, is only through the current state of X(#) and possibly
via time-fixed covariates. Statistical models are usually obtained by specifying the
class of transition intensities (afl i (t)) for each subject i.

The most important deviations from the Markov property in practice are various
kinds of duration dependence, where transition intensities depend on other time ori-
gins than ¢t =0, typically the time of entry to the present state. There are two main
approaches to handling these. As long as transition intensities depend only on one-
time origin each (for example, all intensities depend only on duration in the present
state), a model for the multistate process may be obtained by combining indepen-
dent submodels for each transition hazard rate. These may, in turn, be modeled as
constant or piecewise constant or by non- or semiparametric models, and as long as

sogenstad@statogen.com



128 S. Ogenstad

there is a unidirectional flow in the model, transition probabilities are still straight-
forward explicit functionals, which may be estimated by plugging in the hazard rate
estimates. Variance calculations may, however, become less direct (Andersen and
Keiding 2002).

5.2.2.2 Univariate Recurrent Events

At the moment, we are only concerned with univariate events, i.e., events of the
same kind. Because the various events occur to the same subject, the waiting times
will in general not be independent. Since the events occur one after the other, it will
generally be the case that only the last interval can be censored.

With recurrent events, we can expect a correlation between the times to event of
a given subject. For instance, subjects with severe disease will tend to have more
events and a shorter time between events than those with mild disease. The most
common models used are (i) Generalized estimating equations model using a Poisson
or Negative Binomial distribution, and three extended Cox models: (ii) the Andersen-
Gill counting process (AG) (Andersen and Gill 1982), (iii) the Prentice-Williams-
Peterson counting process (PWP) (Prentice et al. 1981), (iv) Wei, Lin, and Weissfeld
(WLW) (Wei et al. 1989; Lin 1994) and (v) the frailty model (Gutierrez 2002). For
the marginal models, the correlation is dealt with using a robust sandwich-based
estimator to avoid inflation of type I error due to multiple observations per subject
which do not require specification of the correlation matrix (Kelly and Lim 2000).
Consideration needs to be taken whether the events are ordered or not. Ordered
events could be, for instance, first, second, third, ... hospitalization. Unordered events
could, for instance, be of different types, such as ‘hospitalization’, ‘withdrawal’, and
‘death’, where ‘death’ is a competing event. For more details of the approaches, see
Therneau (1997) and Therneau and Grambsch (2000). One can fit similar models
within the Royston-Parmar framework (Royston and Parmar 2002; Lambert and
Royston 2009).

5.2.3 Poisson Regression

A Poisson process can be described via the hazard rate function that is of the form
a(t|H(t) = p(r) 1 >0,

where p(?) is a nonnegative integrable function. It is also assumed that the cumulative
hazard rate

t

W) = f pw)du 1> 0,

0
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is continuous and finite for all # >0. It is seen from the hazard rate function above
that the Poisson process is Markovian. The probability of an event in (¢, t + At) may
depend on ¢ but is independent of the history H(z).

Poisson regression is a generalized linear form of regression analysis used to
model count response data. Poisson regression assumes the response variable Y has
a Poisson distribution and assumes that the logarithm of its expected value can be
modeled by a linear combination of unknown parameters. The Poisson regression
model is frequently used to analyze count data when the dependent variable represents
the number of independent events that occur during a fixed period of time (Prentice
etal. 1981, Sagara et al. 2014). The method assumes that all events are independent
and is based on event rates, where the total number of events is divided by the
follow-up time. The conditional mean of Y (the number of events) can be written as:

Ln(Y|Z,B) = Z;B

where Z;f = Bo+ B1Z1 +. ..+ Br Zy of k parameters and Ln is the natural logarithm
function.

The probability function for a unit-time interval for a subject i can be expressed
as

FrQis ) = e M /y;!

fory = (0, 1, ...) and p; >0. The mean and variance are both equal to p,. With
subscripts indicating subject i’s observation the log-likelihood function can be written
as

Luis i) = Y [y In(ue) — pi — In(yi!)]

The parameter p; can be reparameterized as exp(z;f), and therefore the log-
likelihood function can be written as

L@Bi:y) =Y [yi(ziB) — exp(zi) — In(yi!)]

5.2.4 Negative Binomial Regression

One of the key features of the Poisson distribution is that the variance equals the mean.
However, one often finds that overdispersion is frequent in count data. Overdispersion
in a Poisson model occurs when the variance of the response is greater than the
mean. One approach to handling the overdispersion is to add covariates to the model.
Though, even after conditioning on covariates, there could still be more inter-subject
variation in event occurrence than accounted for by a Poisson process. Another
approach is then to model the overdispersion by adding a multiplicative random
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effect to represent unobserved heterogeneity. Doing so will lead to the negative
binomial regression model where the conditional distribution of the outcome Y,
given an unobserved variable 6, is indeed Poisson with mean and variance 6. The
variable 6 captures unobserved factors that increase (if 6> 1) or decrease (if < 1)
relative to what we would expect given the observed values of the covariates. In this
model, the data would be Poisson if only we could observe 6. Unfortunately, we do
not. Instead, we make an assumption regarding its distribution and integrate 6 out of
the likelihood, effectively computing the unconditional distribution of the outcome.
It is mathematically convenient to assume that 6 follows a gamma distribution. The
unconditional distribution of the outcome is the negative binomial distribution (Cook
and Lawless 2007; Hilbe 2007).

5.2.5 Extended Cox Models for Recurrent Events

As we mentioned, recurrent event data are correlated since multiple events may occur
within the same subject. While using frailty models is one method to account for
the correlation in recurrent event analyses, a simpler approach that can also account
for this correlation is the use of robust standard errors (SEs). With the addition of
robust SEs, recurrent event analysis can be done as a simple extension of either
semi-parametric or parametric models.

If interest focuses on recurrent occurrences of a given event, for instance, hospital-
ization, then another model than the Cox model should be considered. In applications
of such amodel, an interesting functional is often the expected number of occurrences
of the event over the time interval (0, ¢]. The corresponding semi-parametric estimate
of the cumulative expected number of events over (0, ¢] for subject i is

t

EIN:(0))] = / Pols) exp(z )ds

0

where N;(t) is the number of events for subject i over (0, ¢]. This is the same as the
generalized Nelson—Aalen, or Breslow, estimate from survival analysis. (Cook and
Lawless 2002; Andersen et al. 1993).

Cumulative Sample Mean Function

Plots like the one in Fig. 5.7 have limitations since it is often not easy to determine
visually whether a trend or other patterns exist in data.

A visually more informative function is the cumulative sample mean function
(Cook and Lawless 2007). The function can be defined as follows. Suppose that m
individual processes are observed, with each process being observed over the time
interval (0, f]. Let N;(¢) represent the number of events over the time interval (0, ¢]
for the ith process. Then the cumulative sample mean function is
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Fig. 5.7 Event plots from time of randomization for tumor occurrence in 60 subjects (30 subjects
on Active and Placebo, respectively)

N I
A6y = — 3 V(o).

i=1

The same data asin Fig. 5.7 is used to display the cumulative sample mean function
(Fig. 5.8).

5.2.5.1 The Andersen-Gill Model (AG)

The counting process, or Andersen-Gill, approach to recurrent event modeling
assumes that each recurrence is an independent event, and does not take the order or
type of event into account. In this model, follow-up time for each subject starts at the
beginning of the study and is broken into segments defined by events (recurrences).
Subjects contribute to the risk set for an event as long as they are under observation at
that time (not censored). The model is simple to fit as a Cox model with the addition
of a robust standard error estimator, and hazard ratios are interpreted as the effect of
the covariate on the recurrence rate over the follow-up period. This model would be
inappropriate, however, if the independence assumption is not reasonable.

External covariates x(¢), which include fixed covariates, can be incorporated in
a Poisson process by specifying the hazard rate as a function of ¢ and the covariate
history x = {x(u) : 0 < u < t}. This is usually done by defining covariate vectors
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Fig. 5.8 The cumulative sample mean function from time of randomization for tumor occurrence
in 60 subjects (30 subjects on Active and Placebo, respectively)

z(t) that are based on x” and then considering the multiplicative intensities of the
form

p(t1x) = p(t[x") = po(t) exp( (1)B),

where B is a vector of regression parameters of the same length as z(¢). The positive
valued function pg(¢) is often called the baseline rate or intensity and corresponds
to a subject for whom z(#) =0 for all # >0. This model is sometimes referred to
as a log-linear model. The exponential term can be replaced by a different positive
term but has been chosen for mathematical convenience. When the baseline function
po(?) is specified as nonparametric then the model is semiparametric and is called
the Andersen-Gill (AG) (1982) model.

The AG model is an extension of the Cox model and uses the counting process
timescale for all events. The time-scale does not reset to 0 after an event but continues
from the time point of the event. Data for each subject needs to be entered in the
counting process style, with a start time, stop time and censoring indicator for each
event. The model is close in spirit to Poisson regression and the increments are
assumed to be independent. Each gap time (interval from one event to the next)
contributes to the likelihood and the model assumes that the events are independent.
The AG model splits the time scale where the split points are defined by the time
point when the events occur. The time intervals are non-overlapping; that is, the start
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time of a new event is the ending time of the preceding event. In the AG model, the
underlying shape of the baseline hazard is assumed to be the same for all events; that
is, there is no stratification by event number. Although not specified in the original
article, cluster-based robust standard errors are usually used.

The sandwich robust standard error of Lin and Wei (1989) which is a variance-
correction technique, is usually employed together with these Cox extended models
to avoid inflation of type I error due to multiple observations per subject which do
not require specification of the correlation matrix.

5.2.5.2 Conditional Counting Process Model
by Prentice-Williams-Peterson (PWP)

The PWP model is a conditional model, similar to the AG model, but stratified by
events. The hazard rate function is written as:

pik(t1x7) = por(t) exp(z, (1)B)

pox (1) represents the event-specific baseline hazard for the kth event over time. In this
model, a subject is assumed not to be at risk for a subsequent event until a current
event has terminated. The PWP model is similar to the AG model in that it uses
nonoverlapping time intervals (gap times) for each subject. As for the AG model, it
is not possible to be at risk of the second event before the first event has occurred.
The PWP model differs from the AG model in that the baseline hazard for each event
k is allowed to be different; that is, there is stratification by event number.

5.2.5.3 The Wei, Lin, and Weissfeld (WLW) Model
Suppose there are n subjects and each subject can experience up to K potential events.

Let Z;(¢) be the covariate process associated with the kth event for the ith subject.
The marginal Cox model is given by

pir(t1x ) = por(t) exp(z} (B k= 1,... . Kii=1,....n

pok(t) is the (event-specific) baseline hazard function for the kth event and f; is
the (event-specific) column vector of regression coefficients for the kth event. The

WLW model estimates B, ..., Bg, by the maximum partial likelihood estimates

By, ..., Bk, respectively, and uses a robust sandwich covariance matrix estimate for
A/ Al

By, - - -, Bg) to account for the dependence of the multiple failure times.

The WLW model uses overlapping time intervals for each subject and stratum so
that each stratum is fit separately, and then the estimates are combined. This implicitly
forces all strata and covariate interactions to be present. This is equivalent to fitting
all of the data at once, i.e., the events are occurring in parallel. The model treats an
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ordered dataset as though it were an unordered dataset in a competing risks problem.
Thus, each event or event type is in its own stratum and all time intervals starting at O.
Hence, the WLW approach considers each event to be a separate process, so subjects
are at risk for all events from the start of follow-up, regardless of whether they
experienced a prior event. This model is appropriate when the events are thought to
result from different underlying processes, so that a subject could experience the 3rd
event, for example, without experiencing the 1st. Although this assumption seems
implausible with some types of data, like cancer recurrences, it could be used to
model injury recurrences over a period of time, when subjects could experience
different types of injuries over the time period that have no natural order. There is a
need to specify the total number of events in advance. The method also analyzes the
gap times between different events.

5.2.5.4 Competing Risks

Traditional survival analysis methods assume that only one type of events of interest
occurs. A way to avoid dealing with competing events in a more complex model
than the Cox model is to construct composite endpoints. An example of this is when
studying cardiovascular outcomes in type 2 diabetes, where the primary composite
outcome is the time-to-event of the first occurrence of death from cardiovascular
causes, nonfatal (including silent) myocardial infarction, or nonfatal stroke (Marso
etal. 2016). Models in which there are different types of events (multiple destinations)
are also of interest. Competing risks occur when a subject is at risk of more than
one type of event, but can actually experience only one of them. The most common
case is when the different events are death from different diseases, such as cancer,
heart disease, or an infection. Competing risk models are a special case of multistate
models in which each of the different events are absorbing states (Andersen et al.
2002). In competing risks, a subject is at risk of dying from one of, say K, different
causes, but can only actually die of one cause.

More complex methods exist to allow the investigation of several types of events
in the same study, such as death from multiple causes. Competing risks analysis is
used for these studies in which the survival duration is ended by the first of several
events. Special methods are needed because analyzing the time to each event sepa-
rately can be biased. Specifically, in this context, the Kaplan-Meier method tends to
overestimate the proportion of subjects experiencing events. Competing risk analy-
sis utilizes the cumulative incidence method, in which the overall event probability
at any time is the sum of the event-specific probabilities. The models are generally
implemented by entering each study participant several times—one per event type.
For each study participant, the time to any event is censored on the time at which the
patient experienced the first event.

The two most significant measures in competing risks are the cause-specific hazard
rate and the cumulative incidence function. The cause-specific hazard rate function
for cause k, say h(t), gives the hazard rate at time ¢ conditional on not having died
of any of the K possible causes of death. The cause-specific hazard, i (¢), can be
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estimated by treating events due to competing causes as censored observations. The
K cause-specific hazard rates are usually estimated by fitting K separate models
or by stacking the events (having K rows of data per subject) and fitting a model
stratified by cause (Lunn and McNeil 1995). The second most important measure is
the cumulative incidence function, say Ci(¢), for the kth competing event. This gives
the probability, as a function of time, that a subject dies of cause & in the presence
of competing risks. It recognizes that a subject cannot die of cause k if that subject
has already died of one of the competing causes. The cumulative incidence function
is also known as the crude probability of death (Tsiatis 2005). It can be contrasted
with the net probability of death, which gives the probability of dying in a situation
where it is impossible to die of other causes. cumulative incidence functions give
probabilities of death where subjects are always at risk of death from several different
causes. The cumulative incidence is calculated from a relative survival model and is
defined as

1 u t

k K
Ci(t) = /hk(u)exp —/th(v)dv du = /hk(u)l_[Sk(u)du.
0 k=1 0 k=1

0

Ci(t) can be calculated by using the Stata package (Fine and Gray 1999).

A nonparametric analysis of recurrent events in the presence of death as a com-
peting risk has been developed by Ghosh and Lin (2000) and by Li and Lagakos
(1997).

5.2.5.5 Period Analysis

Cancer survival measures the effectiveness of health-care systems. Persistent regional
and international differences in survival represent a source of information that may
be used to avoid early death. Differences in survival have impelled or steered cancer
control strategies. Statistics reflective of patient survival should be as current as pos-
sible. The traditional methods for analyzing survival have important shortcomings
with regard to how current they are with respect to long-term cumulative survival
estimates. An alternative approach denoted ‘period analysis’, that may be used to
overcome or reduce these constraints. When cancer survival is improving over time,
the use of older data underestimates the survival proportion. One potential solution
to this is to use period analysis to obtain more up-to-date estimates of patients’ sur-
vival (Brenner and Gefeller 1997). This approach has become widely established in
the analysis of population-based cancer survival. For example, it has been used in a
number of recent international comparisons of cancer survival (Coleman et al. 2011;
Mgller et al. 2010). Period estimates of patient survival are usually calculated sepa-
rately in subgroups of interest using life table methodology. Up-to-date estimates of
patient survival using period analysis are based on artificially truncating individuals’
survival times prior to a recent cutoff in calendar time. This has the effect of using
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individuals diagnosed in a recent time period for short-term survival and individuals
diagnosed further back in time for longer term survival.

In the Coleman et al. (2011) study, data from population-based cancer registries in
12 jurisdictions in six countries were provided for 2.4 million adults diagnosed with
primary colorectal, lung, breast (women), or ovarian cancer during 1995-2007, with
follow-up to Dec 31, 2007. Data quality control and analyses were done centrally
with a common protocol, overseen by external experts. They estimated 1-year and 5-
year relative survival, constructing 252 complete life tables to control for background
mortality by age, sex, and calendar year. Also, they reported age-specific and age-
standardized relative survival at 1 and 5 years, and 5-year survival conditional on
survival to the first anniversary of diagnosis. In addition, they examined incidence
and mortality trends during 1985-2005. Their findings were that relative survival
improved during 1995-2007 for all four cancers in all jurisdictions.

In the Mgller et al. (2010) study, several international studies reported that survival
from breast cancer is lower in the United Kingdom than in some other European
countries. They compared breast cancer survival between the national populations
of England, Norway, and Sweden, with a view to identifying subsets of patients with
particularly good or adverse survival outcomes. They also extracted cases of breast
cancer in women diagnosed 1996-2004 from the national cancer registries of the
3 countries. The study comprised 303,657 English cases, 24,919 Norwegian cases
and 57,512 cases from Sweden. Follow-up was in 2001-2004. The main outcome
measures were 5-year cumulative relative survival and excess death rates, stratified
by age and period of follow-up.

5.2.5.6 Frailty Models

Correlated survival data can arise due to recurrent events experienced by an individual
or when observations are clustered into groups. Either due to lack of information or
for feasibility, some covariates related to the event of interest may not be measured.
Frailty models account for the heterogeneity caused by unmeasured covariates by
adding random effects that act multiplicatively on the hazard function. Frailty models
are essentially extensions of the Cox model with the addition of random effects.
Although there are various classification schemes and designation used to describe
these models, four common types of frailty models include shared, nested, joint, and
additive frailty.

The frailty model, introduced in the biostatistical literature by Vaupel et al. (1979),
and discussed in detail by Hougaard (1984, 1986a, b, 1995), Duchateau and Janssen
(2008), and Wienke et al. (2001), accounts for the heterogeneity in baseline. This
model is an extension of the proportional hazards model in which the hazard rate
function depends upon an unobservable random variable. Subjects may be exposed
to different risk levels, even after controlling for known risk factors, because of some
relevant unobserved covariates. In a shared frailty model, subjects in the same group
share the same frailty value which generates dependence between those subjects who
share frailties.
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The shared frailty model can be written as follows:
pik(tlui) = u; pi(t) = po(t) exp(z; P + u;),

where p;i(¢) is the conditional hazard rate function for the kth subject from the ith
cluster conditional on u;, po(?) is the baseline hazard, B is the fixed effects vector
of dimension p, z;. is the vector of covariates, and u; is the random effect for the
ith cluster. Thus, subjects in the same cluster i share the same frailty factor and it
is a conditional hazard model, given the u;. The cluster may represent a family or a
single subject for which multiple episodes are observed.

The distribution of #; may be Gamma, Gaussian, or another distribution. The
gamma distribution is often chosen because of its mathematical tractability and
because it is widely used. The one-parameter gamma distribution is defined as:

p1/0—1pw/0)

with I" the gamma function and E(«) =1 and Var(#) =6. This means that subjects in
class i with u; > 1 are frail (having a higher risk) while subject with u; <1 are strong
(having a lower risk). The parameter 6 gives information on the clusters or classes
heterogeneity in the population.

5.3 Illustrations

5.3.1 Poisson Regression Data (N=1000)

Poisson regression is acommonly used count response regression model where events
are considered to be of the same kind. Since the model is the ‘foundation’ of other
recurrent event models, we will look at some of the models’ behavior. Few real-life
datasets are truly Poisson, where the mean and variance are equal. The vast majority of
datasets that are initially thought to be close to Poisson usually have a larger variance
than the mean. When this is the case, we say that the Poisson model is overdispersed,
which may cause the standard errors of the estimates to be underestimated. When
this is the case, a variable may appear to be a significant predictor when in fact it
is not. We will illustrate these behaviors by generating data that follows a Poisson
regression model, then remove a predictor and see the effect this has on the Poisson
model.

We are going to generate n = 1000 standard normally distributed observation for
each of 3 independent variables Z;, Z,, and Z3, and then apply the linear equation
Z/ﬁ = ,31 Zl + ﬂzZz + ﬂ3Z3 with coefficient (/31, ﬂz, /33):(—050, —050, —025)
After exponentiating Z/f the Poisson variate y is generated using the probability
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Table 5.1 General linear Poisson model on y with independent variables Z1, Z;, and Z3

Generalized linear models No. of obs = 1,000

Optimization : ML Residual df = 996

Scale parameter = 1

Deviance = 1129.256566 (1/df) Deviance = 1.133792

Pearson = 1085.205183 (1/df) Pearson = 1.089563
Variance function: V(u) = u [Poisson]

Link function : g(u) = Ln(u) [Logl]
AIC = 2.629619
Log likelihood = -1310.809415 BIC = -5750.868
| OIM

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

z1l | -.4896427 .0270418 -18.11 0.000 -.5426436 -.4366417

z2 | -.4291967 .0286559 -14.98 0.000 -.4853613 -.3730322

z3 | -.2327014 .0274627 -8.47 0.000 -.2865273 -.1788755

cons | -.0219569 .034287 -0.64 0.522 -.0891583 .0452444

Table 5.2 General linear Poisson model on y with independent variables Z, and Z3

Generalized linear models No. of obs = 1,000

Optimization : ML Residual df = 997

Scale parameter = 1

Deviance = 1451.594534 (1/df) Deviance = 1.455962

Pearson = 1503.530661 (1/df) Pearson = 1.508055
Variance function: V(u) = u [Poisson]

Link function : g(u) = Ln(u) [Logl]
AIC = 2.949957
Log likelihood = -1471.978399 BIC = -5435.437
| 0IM

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ o e e

z2 | -.4736272 .0284366 -16.66 0.000 -.5293618 -.4178925

z3 | -.2235353 .0276194 -8.09 0.000 -.2776683 -.1694023

cons | .1155962 .0311098 3.72 0.000 .0546222 .1765703

integral transform methods of Kemp and Kemp (1990, 1991) and the method of
Kachitvichyanukul (1982) through the Stata software.
The Poisson variate y is next modeled on the three randomly generated indepen-
dent variables Z;, Z,, and Z3. The results of the analysis are presented in Table 5.1.
Although a sample size of n= 1000 usually is considered to be a decent sample
size for a clinical study with one single treatment arm, we will find some interesting
outcomes from the analysis results. We find that the estimates of the coefficients (81,
B2, B3) are (—0.4896, —0.4292, —0.2327). All parameter estimates are lower than
what we assigned them to be, especially the estimate of 8, which is —0.4292 instead
of —0.50. The Pearson dispersion statistic, defined as the Pearson statistic divided
by the model degrees of freedom, would be equal to 1.0 if the model is the ‘correct’
one. Here the Pearson statistic is 1.089563, which is about 9% higher than expected.
We will now omit predictor Z; and again model the data on the remaining vari-
ables. Thus, the Poisson variate y is then modeled on the two randomly generated
independent variables Z, and Z3. The results of the analysis are presented in Table 5.2.
We find that the estimates of the coefficients (8,, 83) are (—0.4736, —0.2235).
Both parameter estimates are still lower than what we assigned them to be, but
not worse than from the previous model. The Pearson dispersion statistic has

sogenstad@statogen.com



5 Designing and Analyzing Recurrent Event Data Trials 139

now increased from 1.089563 to 1.508055. Here the Pearson statistic has notably
increased, telling us that the model is overdispersed. The AIC and BIC statistics are
also inflated.

5.3.2 Poisson Regression Data (N =25,000)

We will now increase the sample size to 25,000, but everything else will be kept the
same. When we use all of the independent variables Z,, Z,, and Z3 in the model
(table not shown), we find what we can expect, that the Pearson dispersion statistic is
1.0121, which is very close to 1.0. The estimates of the coefficients (8, B2, 83) are
(—0.4889, —0.5058, —0.2563), i.e., the parameter estimates are very close to what
we assigned them to be.

Again, we now omit predictor Z; and again model the data on the remaining
variables. Thus, the Poisson variate y is then modeled on the two randomly generated
independent variables Z, and Z3. The results of the analysis are presented in Table 5.3.

We find that the estimates of the coefficients (8,, B3) are (—0.5062, —0.2565).
Both parameter estimates are still close to what we assigned them to be, though
this is not an indication that the model is appropriate. What has notably changed is
that the Pearson dispersion statistic is now about 1.375, telling us that the model is
overdispersed. Given the very large dataset of 25,000 observations, the dispersion
statistic correctly indicates that the Poisson model is overdispersed. We see that the
model obviously does not fit the data.

We will now assume that the variance is proportional rather than equal to the mean,
and estimate the scale parameter ¢ dividing Pearson’s chi-squared by its degrees of
freedom (df), which gives us the value 1.375. We see that the variance is about
37.5% larger than the mean. This means that we should adjust the standard errors
multiplying by 1.173, the square root of 1.375 (see Table 5.4).

Using this procedure of scaling the standard errors we have essentially attributed
all the lack of fit to pure error. We can also try to run the Poisson model with the

Table 5.3 General linear Poisson model on y with independent variables Z> and Z3

Generalized linear models No. of obs = 25,000

Optimization : ML Residual df = 24,997

Scale parameter = 1

Deviance = 34918.46873 (1/df) Deviance = 1.396906

Pearson = 34373.65875 (1/df) Pearson = 1.375111
Variance function: V(u) = u [Poisson]

Link function : g(u) = Ln(u) [Log]
AIC = 2.953739
Log likelihood = -36918.7331 BIC = -218216.9
| OIM

vy | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ A m e e e

z2 | -.5062168 .005487 -92.26 0.000 -.5169712 -.4954625

z3 | -.2564794 .0054965 -46.66 0.000 -.2672522 -.2457065

_cons | .1130332 .0063441 17.82 0.000 .1005989 .1254674
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Table 5.4 General linear Poisson model on y with independent variables Z, and Z3
Generalized linear models No. of obs = 25,000
Optimization : ML Residual df = 24,997
Scale parameter = 1
Deviance = 34918.46873 (1/df) Deviance = 1.396906
Pearson = 34373.65875 (1/df) Pearson = 1.375111
Variance function: V(u) = u [Poisson]
Link function : g(u) = Ln(u) [Log]
AIC = 2.953739
Log likelihood = -36918.7331 BIC = -218216.9
| OIM
vy | Coef Std. Err. z P>|z| [95% Conf. Interval]
_____________ e e e
z2 | -.5062168 .0064344 -78.67 0.000 -.518828 -.4936057
z3 | -.2564794 .0064454 -39.79 0.000 -.2691122 -.2438466
cons | .1130332 .0074394 15.19 0.000 .0984522 .1276142

(Standard errors scaled using square root of Pearson X2-based dispersion.)

robust option to compute standard errors using the robust or ‘sandwich’ estimator.
Doing so we will get very similar results. In either case, all tests have to be done using
Wald’s statistic. Likelihood ratio tests are not possible because we are not making
full distributional assumptions about the outcome, relying instead on assumptions
about the mean and variance.

5.3.3 Negative Binomial Regression (N =25,000)

Since the Poisson model with the two independent variables Z, and Z3 was overdis-
persed, we will now fit a negative binomial model to the recent data with the same
variables Z, and Z3. The results are shown in Table 5.5.

The alpha in Table 5.5 is the variance of the multiplicative random effect. We
have overwhelming evidence of overdispersion. For testing hypotheses about the
regression coefficients, we can use either Wald tests or likelihood ratio tests.

Table 5.5 Negative Binomial model on y with independent variables Z, and Z3

Negative binomial regression Number of obs = 25,000
LR chi2(2) = 6437.40

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -36210.117 Pseudo R2 = 0.0816
y | Coef Std. Err. z P>|z| [95% Conf. Interval]

z2 | -.5068882 .0067312 -75.30 0.000 -.5200811 -.4936952

z3 | -.25639 .0066132 -38.77 0.000 -.2693517 -.2434284

cons | .1127922 .0071559 15.76 0.000 .098767 .1268175
/lnalpha | -1.342182 .0367011 -1.414114 -1.270249
alpha | .261275 .0095891 .2431408 .2807617

LR test of alpha=0: chibar2(01) = 1417.23 Prob >= chibar2 = 0.000
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Table 5.6 Comparing =~ ---====—--=-----mmmm oo

. Variable | poisson overdisp nbreg
e§t1mate§ and standard errors | Table Table Table
side by side | 3.2.1. 3.2.2. 3.3.1.
_____________ m o e e e
y z2 | -.50621684 -.50621684 -.50688815
| .00548703 00643438 0067312
z3 | -.25647936 -.25647936 -.25639002
| .00549646 00644543 00661321
cons |  .1130332 .1130332 .11279225
| .00634412 .00743944 .00715588
_____________ O
lnalpha |
_cons | -1.3421817
| .03670105

5.3.4 Comparing Estimates and Standard Errors

The parameter estimates based on the negative binomial model are not very different
from those based on the Poisson regression model. We will now compare the models
side by side in Table 5.6.

Both sets of parameter estimates would lead to the same conclusions. Looking
at the standard errors reported just below the coefficient estimates, we see that both
approaches to overdispersion lead to very similar estimates and that ordinary Poisson
regression underestimates the standard errors.

5.3.5 Goodness of Fit

We will evaluate the goodness of fit using the second dataset above with 25,000
observations. One way to compute the deviance of the negative binomial model is
to feed the estimate of the variance into the generalized linear model. The deviance
statistic is now 1.0741, which tells us that the negative binomial model fits much
better than the Poisson model, but still, has a deviance just above the five percent
value. One way to model this type of situation is to assume that the data come from
a mixture of two populations, one where the counts are always zero, and another
population where the count has a Poisson distribution with mean 1. In this, model
zero counts can come from either population, while positive counts come only from
the second population.

The distribution of the outcome can then be modeled in terms of two parameters,
7 the probability of ‘always zero’, and u, the mean number of for those not in the
‘always zero’ population. A natural way to introduce covariates is to model the logit
of the probability 7w of always zero and the log of the mean w for those not in the
always zero population.
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5.3.6 Simulations

Clinical trial simulation studies can be used to assess the impact of many aspects of
trial design, conduct, analysis and decision making. Simulation studies can play a
vital role in improving the efficiency of drug development within the pharmaceutical
industry, but only if they are well designed and conducted. An efficient way of
evaluating the properties that different models have for the study design and analysis
that we are considering is to use simulations. A number of common software packages
make this possible, such as EAST, SAS, Stata, and R.

A comprehensive overview is given of how to use simulations for designing clin-
ical trials and how to analyze the simulated clinical trial data in Ette et al. (2002). A
generic template for clinical trials simulations that are typically required by statisti-
cians has been developed by Westfall et al. (2008). Realistic clinical trials datasets
are created using a unifying model that allows general correlation structures for end-
point and timepoint data and nonnormal distributions (including time-to-event), and
computationally efficient algorithms are presented. The structure allows for patient
dropout and noncompliance. A grid-enabled SAS-based system has been developed
to implement this model and details are presented summarizing the system develop-
ment (Westfall et al. 2008, 2010).

For instance, we may use simulations to compare the conditional frailty model and
several variance-corrected and frailty models with a known data generating process
that exhibits heterogeneity, event dependence, both, and neither. Box-Steffensmeier
and De Boef (2006) did this and focused their simulations on the comparison of the
three more popular and promising variance-corrected models: the Andersen—Gill,
conditional gap time, and conditional elapsed time models, and the basic frailty
model estimated with a gamma random effect. They gauged model performance on
three dimensions: the bias in the estimated treatment effects as well as in the esti-
mated variance of the random effect, bias in the standard errors, and rate of which the
estimated standard errors includes the true parameter. Their simulations suggested
that the conditional frailty model can estimate the effects of both sources of correla-
tion simultaneously and retrieve the parameters of the true data generating process
better in all four cases. Furthermore, in the simulations they investigated, the con-
ditional frailty model performed similarly to, or better than, the variance-corrected
and frailty alternatives. In the case of both heterogeneity and event dependence, only
the conditional frailty model performed well. So, in cases where there is a possi-
bility of both, and often we cannot rule either out, the conditional frailty model is
recommended.

5.4 Discussion

The foundation of recurrent event analysis is survival analysis has been acommon and
well-accepted strategy to study treatment effect in a population of patients. During
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the last few years, there has been an increasing interest in assessing therapy effect
not only by using time to death, but also time to surrogate events such as time to
hospitalization. The combined endpoint of time to death and time to disease-related
hospitalizations is often analyzed with a time-to-first-event analysis, which has the
drawback of waste of information and indistinct handling of two clinically different
events.

The analysis of multiple events per subject cannot be approached by a standard
Cox model, where the assumption of independence of observations is not valid. In
order to account for intra-subject correlation, we have presented the use of marginal
and multistate models using a counting process approach for, for instance, the joint
analysis of survival and time to disease-related hospitalizations.

In a comparison of common statistical methods for analyzing recurrent event data,
the results with each method for lack of bias, efficiency, and robustness for within-
subject correlation are not, but depending on the process driving the event counts.
In general, the Poisson regression with correction for overdispersion has similar
coverage probabilities of confidence intervals, but slightly higher type I error rates
compared to the robust Andersen—Gill and negative binomial approaches, which are
therefore preferable. Advantages in power for some situations are only at the price
of an increased type I error. The negative binomial regression surprisingly produces
results similar to those of the Andersen—Gill approach, even when the distribution
is not homogeneously Poisson. On the other hand, for homogeneous Poisson pro-
cesses, the Andersen—Gill approach does not lose efficiency in comparison with
the perfectly fitting negative binomial regression model (Jahn-Eimermacher et al.
2015). The demonstrated comparability of the Andersen—Gill approach and nega-
tive binomial regression for Poisson processes supports the findings of Metcalfe and
Thompson (2006). The results are in agreement with the data example presented by
Guo et al. (2008), in which trial results from an Andersen—Gill model were similar
to those from Poisson regression.

For the conditional model not derived from the Poisson process, with all the inves-
tigated methods, estimation of a zero treatment effect and its standard error may be
considered as acceptable, and thus be applicable to hypothesis testing. However, the
effect estimates are biased, whatever method is used. All of the investigated meth-
ods are not applicable if the independent increment assumption is violated. For a
specific application, this assumption, therefore, must be checked by appropriate sen-
sitivity analyses. So, results could be compared with those of the conditional model
of Prentice et al. (1981) or the marginal model of Wei et al. (1989). However, these
approaches also have sources of bias as demonstrated by Therneau and Grambsch
(2000) and Kelly and Lim (2000) and, furthermore, the applicability of the marginal
model to recurrent failure time data is discussed critically in Metcalfe and Thompson
(2007).

We found no advantages in performance with Poisson regression as compared with
the Andersen—Gill approach, which allows more complex analyses and may, there-
fore, be preferable. The Poisson regression remains applicable when only aggregated
event counts are available or when the actual time of occurrence of an event cannot
be determined. Dean and Balshaw (1997) demonstrated for nonhomogeneous Pois-
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son processes that treatment effects can be efficiently estimated based on aggregated
count data as long as censoring is balanced between treatment groups.

Standard errors might be substantially underestimated with all the methods exam-
ined if within-subject correlation is not accounted for, in accordance with previ-
ous findings (Glynn and Buring 1996, Therneau and Hamilton 1997, Metcalfe and
Thompson 2006). Robust variance estimation can be used to adjust for the simulated
degree of within-subject-correlation, however, in rare cases, data may be even more
highly correlated (Thall 1988). In those situations, the robust methods may also fail
to prevent type I error from increasing to unacceptable levels.

The use of a gamma distribution for the random effect is common in the literature
(Stukel 1993; Metcalfe and Thompson 2006; Thomsen and Parner 2006). Regression
parameter estimation in a gamma frailty model seems to be robust to frailty distri-
bution misspecification as Hsu et al. (2007) demonstrated for single event data in
cohort and case-control family trials. Kelly and Lim (2000), Therneau and Grambsch
(2000) and Metcalfe and Thompson (2006) used realizations from normal and uni-
form distributions, with which the Andersen—Gill method underestimated treatment
effects.

Finally, the most appropriate model should be chosen based on the anticipated
nature and structure of the data.
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