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Chapter 1 ®)
A Statistical Approach to Clinical Trial e
Simulations

Stephan Ogenstad

1.1 Introduction

Drug development is not for the fainthearted. We have heard repeatedly over the years
regarding the process of bringing a new compound to the market, that every delay will
add millions of dollars in added expenses and lost revenues. In order to address some
of the concerns in this development process is to simulate the potential outcomes of
the clinical study. Simulations of clinical trials go by different names, such as clinical
trial simulations (CTS), modeling and simulation (M&S), computer-assisted trial
design (CATD), model-based drug development (MBDD), and model-informed drug
discovery and development (MID3). CTS is being increasingly viewed as an integral
part of clinical development programs and can be used to improve the understanding
and decision making at every stage of drug development. These simulations help to
develop better insight into the operating characteristic of a specific trial design. CTS
provides the ability to test multiple scenarios, predict the potential study outcomes
for each scenario and select the most advantageous study design. Hence, before
conducting a study, examining various trial designs through computer simulations
can help improve the likelihood of a successful study.

In the field of airplane development, already from the beginning of manned flight,
there has been a symbiotic relationship between the airplane and simulation in all of its
different forms. The role of simulation and flight simulators in airplane development,
training and evaluation have evolved significantly over the past 80 years, often in
response to technical innovations in both the airplane and ground support systems.
In the same spirit, CTS ought to be an integral part of clinical development, in the
design of the clinical protocol and in training of staff and investigators.
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2 S. Ogenstad

In clinical drug development, the process of development is classified into the four
Phases I to I'V. Phase I studies are frequently conducted in normal healthy subjects
(except for the field of cancer where it is usually done in patients), where focus
is on identifying tolerable doses, and on learning about what the body does to the
drug (pharmacokinetics) and what the drug does to the body (pharmacodynamics),
as well as examining if there are potential interactions with other classes of drugs.
In Phase IIA the main objective is to evaluate whether or not the drug has initial
encouraging efficacy in a small group of patients (‘proof of principle’ or ‘proof of
concept’). The goal of Phase IIB is to learn how to use the drug in a larger group of
patients for the indication under consideration. This is usually achieved by applying
dose ranging, with or without simultaneous measurements of systemic exposure.
In Phase III the efficacy and safety of the novel drug should be confirmed against
an established treatment. Sometimes Phase ITIB outcome studies are conducted to
learn if, for instance, a type-2 diabetes medication has cardiovascular benefits over
other type-2 diabetes medications already on the market. In Phase IV the purpose
is to accumulate more information on safety and efficacy from several thousands of
volunteers who have the disease. Sheiner has viewed clinical development as two
major learn-confirm cycles, the Phase I-ITA and the Phase IIB-III cycles (Sheiner
1997; Sheiner and Ludden 1992).

Nevertheless, even if the main objective of a clinical study is confirming, there are
several opportunities to learn about variation in pharmacokinetics and pharmacody-
namics in patient groups to increase the likelihood of identifying dosing strategies
that will result in safe and effective treatment for the individual patient. Clinical
trial simulations can be a valuable tool for decision making in drug development
by applying diverse types of models. It then consists of three main components: a
disease-placebo model, a drug model, and a trial design model. The disease-placebo
model is concerned with the time course of the disease, relative risks with respect
to morbidities and mortality. The drug model describes the relationship between
therapeutic efficacy, toxicities, and doses. The clinical trial design model deals with
components such as baseline characteristics (e.g. inclusion/exclusion, actual values
the subjects have at baseline), compliance, missing values, endpoints, and statistical
methods of analysis. The use of CTS for drug development has been shown to be
a cost-effective approach, for instance, the exploration of multiple dosing regimens
and their likely pharmacodynamic effects over diverse patient populations (Huang
and Li 2007; Ette et al. 2003; Riggs et al. 2007; Holford and Ploeger 2010). Here,
simulations provide a means to assess the effects of various loading and maintenance
dosing parameters on steady-state concentrations; effects of dosing holidays (period
when a patient is not taking the drug) on pharmacodynamics response; etc.

Without thorough planning, pretesting, and execution, the clinical trial imple-
mentation risks are high. Thus, optimization of the clinical trial design should be
the main focus before starting the study. In the past, clinical trials were designed
using ad hoc empirical approaches, where the ‘organization’ impatiently desired the
clinical trial to commence under the pretense not to lose any valuable time. Because
data resulting from the clinical trial is often too complex to allow simple conclusions
of what the outcome of the study is, the interest in CTS has been ongoing for the
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1 A Statistical Approach to Clinical Trial Simulations 3

past two decades (although there have been earlier success stories recounting the
value of simulation for design of clinical trials), and has today become a frequently
used tool in quantitative pharmacology investigations in academia, regulatory and the
biopharmaceutical industry. Current trends within the pharmaceutical industry and
within the offices of some regulatory agencies have suggested a reassuring future for
clinical trial simulations (Chang 2010, 2014; Kimko and Peck 2010; Westfall et al.
2008; Duffull and Kimko 2002; Holford et al. 2000; Sheiner and Steimer 2000). If
CTS is done thoughtfully, Peck et al. (2003) outline an ambitious but possible future
that CTS might sometimes replace the second Phase III trial, and therefore only a
single trial is needed.

CTS is the generation of biomarker or clinical responses in virtual subjects that
take into account (a) the trial design and execution, (b) pathophysiological changes
in subjects during the trial (disease-progress model), and (c) pharmacology (drug-
intervention model), using mathematical, statistical and numerical methods and mod-
els. CTS can be applied in the design, analysis, and interpretation of human clinical
drug trials in order to promote key decisions in drug development management
and regulatory approval (Kimko and Peck 2010; Holford et al. 2000). The Euro-
pean Medicines Agency (EMA) and the Center for Drug Evaluation and Research
(CDER) in the U.S. Food and Drug Administration (FDA) have each issued a num-
ber of guidances for drug developers that pertain to the role of CTS in development
and regulation. The FDA’s 2009 Guidance for Industry: End-of-Phase 2A Meetings
urges sponsors to seek regulatory meetings to discuss quantitative modeling and trial
simulations to improve dose selection and clinical trial design. Although not solely
focused on CTS, these guidances describe standards and expectations concerning
regulatory submission (Kimko and Peck 2010). CTS is included in the FDA’s pub-
lished strategic priorities and is expected to be incorporated in the 2017 PDUFA
reauthorization.

Hence, CTS supports the project team to minimize risks and guide decision mak-
ing by formalizing assumptions, quantifying and testing uncertainties. The simula-
tions can be used for defining and testing analysis models, exploring study design
properties, and performing analyses about precision and accuracy of potential end-
point estimates. The simulations can incorporate available scientific information to
help the entire project team communicate and test ideas, and to plan significant,
effective trials for every phase of clinical development. The CTS helps the team
anticipate risks and preview the range of expected results before huge investments
are allocated. Thus, CTS has the ability to transform drug development by mak-
ing better use of prior data and information and to explore important clinical trial
designs. As a result, the project team can receive swift feedback on the impact on
trial outcomes that alternative designs and analysis methods could have presented
in the future. CTS can gain credibility with the ‘nonscientists’ as the trial design
can be made understandable without technical terms and a different kind of reason-
ing, and can give clearness to otherwise difficult principles influencing opinion and
behavior. The statistician has an imperative role to play within their organization and
that by using professionally developed trial design software, such as EAST (Cytel
Corporation), or if the organization has invested in the writing of their own computer
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programs in, for instance, SAS (SAS Institute) or R. With the help of such software
they can rapidly generate many alternative design scenarios that accurately address
the questions at hand and the goals of the project team, freeing up time for vital
discussions about the choice of endpoints, populations, and treatment regimens.

1.2 Protocol Deviations

Before undertaking any clinical research project, a fully developed and vetted study
protocol is critical. In the field of clinical development, having a well written and
thought out protocol means that we have a detailed plan that is available and consulted
frequently during the conduct of the clinical research project and that the investigators
and staff are well trained on at following the protocol. Before the clinical trial starts,
it is critical that an efficient statistical methodology is selected and implemented in
order to effectively analyze the data after database lock where no data is any longer
allowed to be altered. The statistician is critical in conceptualizing the analytical
methodology that should be used. Ideally, the statistician needs in a blinded fashion to
continue to follow the study as the data is being collected and prior to final analysis of
the data. It is not uncommon that the data that was planned to be collected, changes for
pragmatic and to some unforeseen reasons. This means that the thoughts that go into
the statistical analysis plan should if possible have considered the prospect of such
changes could become a reality. Protocol deviations should be rare or unexpected if
an intense effort has gone into writing the protocol, though unfortunately many times
amendments need to modify the protocols. Consequences of protocol deviations on
clinical trial outcomes depend on their qualitative and quantitative characteristics.
Thus, while the consequence of one type of protocol deviation can be easily evaluated,
some are more difficult to discern than others (e.g. noncompliance to treatment). It
follows that the combination of several deviations of varying degrees may lead to
unexpected consequences on study outcomes. Protocol deviations can result from
many different circumstances, where the most critical deviations are noncompliance
and missing data and dropped out subjects.

1.2.1 Noncompliance

Noncompliance or non-adherence to treatment protocol occurs when a patient does
not carry out the clinical recommendations of a treating physician. In other words, it
is the failure of the patient to follow the prescribed treatment regimen and procedures.
Important questions are: What are the consequences if patients take fewer or extra
doses of treatment medication than prescribed, but the remaining doses are taken on
time, or if patients stop taking the treatment but remain on the study? Noncompliance
is a significant problem in all patient populations, from children to the elderly. It
applies to nearly all chronic disease states and settings and tends to worsen the
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longer a patient continues on drug therapy (Spagnoli et al. 1989; Mardonde et al.
1989; Lacombe et al. 1996). Noncompliance rates with schizophrenia treatment could
be as high as 40%, with partial noncompliance as high as 75% (Moore et al. 2000).

Noncompliance can result from a denial of the problem. Many diseases and condi-
tions are easy to ignore, even when they have been diagnosed. This is particularly true
for diseases that are asymptomatic and so does not bother the patient. For instance,
patients with diabetes, or hypertension may not have symptoms that get in the way
of everyday life. They may not even have known that they had the condition until it
showed up on a routine examination, which can make it easy for patients to ignore
the prescribed treatment regimens. The patients may have difficulty with the regi-
men and may have trouble following the directions. For instance, taking a pill in the
middle of the night, or simply opening the ‘child safe’ container may create a barrier
to compliance for a patient with rheumatoid arthritis.

Bothersome previous experiences with medications prescribed by their physicians
may lead the patients not to take their medication. As a consequence, some patients
may not take the medication or may take another medication that they have at home
for the same diagnosis. Whether the patients tell the investigators or not will cause
difficulties interpreting the results and will bias the study results. Reasons for not
disclosing to the investigator that the patient is not taking the medication could be
that the patient does not want to affect their relationship with the investigator.

1.2.2 Dropouts and Missing Data

A common problem in clinical trials is the missing data that occurs when patients do
not complete the study and drop out without further measurements are taken. Possible
reasons for patients dropping out of the study could include death, adverse reactions,
unpleasant study procedures, lack of improvement, early recovery, and other factors
related or unrelated to trial procedure and treatments. Clinical trials that require
adherence that is difficult to follow or have an extensive number of endpoints often
suffer from missing data or even subject dropouts. The dropout and missing data
mechanisms are often complex, and generally, cannot be assumed to be missing at
random or missing completely at random (MCAR). More realistically, the missing
values depend on patient experience in the trial. In some cases patient dropouts are
infrequent with MCAR mechanism; in other cases, dropouts may be related to a lack
of safety or efficacy of the patient’s experience. There are several possible ways to
model the dropout mechanism; some examples and further references are contained
in O’Brien et al. (2005). Patient dropout is a real concern for clinical trials and
one of the most problematic protocol deviations. Two types of dropouts exist, non-
informative and informative dropouts. Non-informative dropouts simply mean that
some patients may randomly stop to be reported in the study, this independently from
the treatment they received, and thus independently of efficacy or side effects. Non-
informative dropout will simply decrease the statistical study power which is easier
to control. On the contrary, disease progress can be perceived by the patient in many
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ways not measured in the study but, however, correlate with the endpoint that is being
followed. In this case, the dropout is informative to the disease progress, and modeling
the disease progress separately from the dropout process may be inefficient and may
even produce biased estimates. The bias can be particularly notable if one wants to
use the model to predict actually observed features, e.g., observed average disease
progress. Imputing unobserved data, e.g., last value carried forward is commonly
used as a conservative approach to demonstrate treatment differences, though last
value carried forward is, however, inferior from a modeling standpoint as the pseudo
data are treated as observed data, creating biases (Westfall et al. 2008).

1.3 Methods

Clinical trial simulations can produce a number of advantages that will help us
predict likely outcomes for a range of assumptions about trial size, dose selection
and operational considerations, such as:Study specific aspects

Study specific aspects

e Comparisons of different trial designs where we can evaluate what we might be
losing in one aspect of one design in return for gaining another aspect with another
design.

e Optimal dosing for each treatment arm to minimize overlap in exposures and
subsequent responses.

e Anticipated patient exposures and responses for each treatment.

Improved specification of inclusion/exclusion criteria

e Optimizing inclusion/exclusion criteria to capture the desired subject population
that is influencing the response.

e Potential effects of changes in recruitment rates and criteria on study timelines
and results.

Safety and efficacy
e Effects of protocol deviations and treatment compliance on safety and efficacy.
Study results

e Placebo effects on patients over time.
e How the investigational treatment compares to the competitors’ treatments.

Statistical analysis

e Whether planned study analysis can detect statistical significance.

e Since conventional statistical tests may be insensitive to a wide range of situations
occurring commonly in practice, particularly when the effect of the factor under
study is heterogeneous, an evaluation of the test can be made where approximations
of the test statistic’s distribution have been used in the past.
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The computer models that simulate real scenarios are generally developed from
previous datasets that may include preclinical data, as well as previous phases of
real trials. As clearly stated in Burman et al. (2005) the CTS methodology can be
summarized in four steps:

Utilizing relevant information.

Building a mathematical model (usually for the effect of a drug or device).
Predicting the outcome of potential clinical trials.

Optimizing the clinical trial program.

bl

Before applying the four steps, the aims of the modeling effort must be defined.
What is relevant information, what is a good statistical model, and what is an opti-
mal clinical program depends on the aims we have with the model. The modeling
is an interactive process between the formulation of the inputs to the model and the
actual outcomes from the simulations. The models should include terms for covariate
effects, as models used for simulation studies must deal with the variability from indi-
vidual to individual. Covariate distribution models describe the relevant information
that goes into the simulation, on the basis of preceding trials or clinical experience.
The variability of patients’ demographic and physiological characteristics in the pop-
ulation of interest that might affect the response. Data in clinical trials are naturally
correlated and this should be considered. A number of things about the correlation
structures can be learned from previous clinical trials. Baseline measurements are
typically correlated with the response. Incorporation of them in the analysis will
therefore often considerably improve the trial’s effectiveness to show potential ther-
apeutic effects. A baseline response model can help to select the target population
or to interpret the trial data. Increasing the number of repeated measurements at
baseline and at the end of the treatment period for each subject in a clinical trial will
obviously increase the available information on treatment effects and could increase
the statistical efficiency of the analysis (Frison and Pocock 1992; Ogenstad 1997).
The most efficient way to allocate visits over time at the design stage (e.g., before or
after randomization), and the best way to utilize the additional measurements from
these visits at the analysis stage is not evident but could be explored via simulations.
A model of the baseline response and the variability in the measurements can predict
how much the gain would be in terms of efficiency, and could for instance influence
the decision on whether the inclusion/exclusion criteria should be modified or not.
The impact of the different covariate distributions on the expected outcome of a sim-
ulated trial can be assessed, which makes it possible to explore conditions that have
been ruled out in the inclusion/exclusion procedures of the actual trial.

As Burman et al. (2005) point out, what information is relevant for the CTS
largely depends on what the aims of the modeling are. It also depends on how much
information is already available. The best information is perhaps hard endpoint data
for the drug in question from a large, randomized, placebo-controlled clinical trial.
Unfortunately, this kind of data is seldom available before the end of the clinical
program, at the earliest. Hence, what we are concerned with is combining information
from diverse sources and incorporating expert judgment in a nonbinding way, and
remembering that not all experts are right all the time.
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The goal of model building is to establish a model that is fit for the purpose, and not
made too involved in order to fulfill the purpose of the design of the clinical study. We
need to unify the thinking about the study design and inference. The CTS should make
the design and future conduct of the study easier to understand. When a clinical trial is
planned, it is supposed that the trial will be executed according to a specific protocol
that defines all aspects of the study design, from its beginning to its completion. For
instance, characteristics that should be precisely defined in any clinical protocol are
whether the subjects are patients or healthy volunteers, inclusion/exclusion criteria,
number of subjects to be accrued, treatments and allocation mechanism, blinding of
investigators or subjects to the allocated treatment, dosage regimen (dose and timing
of doses), endpoints, frequency of follow-up evaluations, and the length of the study.

Complete adherence to the study protocol will permit unbiased estimation of the
treatment effects in terms of safety and efficacy with adequate statistical power if the
assumptions at the planning stage were correct. Deviations from the protocol may lead
to failure of the study to attain its declared purposes. It can be difficult at the planning
stage to evaluate what the consequences are of a single protocol deviation, and almost
impossible to do it for a combination of protocol deviations. One way to quantify the
consequences of those deviations is by using models, describing individual behaviors
and responses, combined with trial simulations that include these protocol deviations.
When the results of the trial can be envisaged it is sometimes possible to choose, in a
methodical and cogent way, between different possible trial designs. The features that
are included in the model will unveil what design features can be compared using that
model. Missing data cause the usual statistical analysis of complete or all available
data to be subject to bias and will diminish the power of the study. Although there
are a number of imputation methods, there are no universally applicable methods for
handling missing data that will restore the dataset to what it could have been if no
data had been missing. As has been noted in the ICH-E9 guideline, ‘no universally
applicable methods of handling missing values can be recommended’. The issue of
managing missing data is intrinsically difficult because it requires a large proportion
of missing data to investigate a method. Moreover, a large proportion of absent data
would make a clinical study less credible. The best suggestion is to minimize the
chance of dropouts at the design stage and during trial monitoring. It should be
reiterated that although an increase in a number of patients to the study will decrease
the standard errors, but will not correct the bias that could have been caused due to
the missingness of data.

Examples of other features that can be compared are study designs (e.g. sequen-
tial, adaptive, crossover, parallel), doses, dosing schedules, study duration, different
endpoints, multiple endpoints and timing when the endpoints are measured. The data
that is generated from the simulations, together with different statistical methods of
analysis of the data may lead to an optimization of the whole study process.

When the purpose of the simulation is to estimate the powers of the statistical tests
by the relative number of statistical significances it produces, it is important to use an
adequate number of simulations. With 1000 simulations and a power around 90%,
the estimation error is approximately 3.7% using a 95% confidence interval. Due
to the propagation of uncertainty in the square of a quotient, the uncertainty in the
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power estimates translates to an uncertainty in the relative efficiency of the tests in
the order of 13—16%. With 10,000 simulations the estimation error is approximately
1.2% and the uncertainty in the relative efficiency of the order of 5%. In pursuance
of getting reliable estimates of the true significance level, we recommend simulation
sizes around 25,000.

1.4 The Clinical Trial Simulation System

We argue that the CTS system should be flexible, preserving the realism of
the doubly-multivariate endpoint/timepoint correlation structures, the informative
dropout mechanisms, non-normal distributions, non-monotonic hazard rate func-
tions, survival endpoints, and noncompliance effects (Westfall et al. 2008). The
assumptions should be a trade-off between ease of use of the system and realism
and flexibility of its outputs. This type of framework for multivariate simulation is
usually reasonably simple to program where a variety of software can be used, e.g.
SAS (SAS Institute), R (R Foundation for Statistical Computing), SPLUS (TIBCO
Software Inc.), Mathematica (Wolfram Research), and MATLAB (MathWorks, Inc.).

From literature, the goal with CTS is often to build a complete model. In Holford
et al. (2000) their review on simulations in clinical trials, they state that the model
should incorporate all scientific knowledge about the disease and drug. Burman
et al. (2005) take a more modest view, where model components should be chosen
according to the fit-for-purpose principle. We are convinced that simpler models can
sometimes be very useful. Decisions where it may be useful cover a wide range of
aspects, including choice of the drug candidate, stop/go for the further development
of a compound, choice of patient population, and decisions regarding the positioning
versus marketed competitor compounds.

In the PK/PD-phase of drug development, the introduction of population mod-
eling has made it possible through the application of statistical non-linear mixed-
effects models to data obtained from relatively few samples in many individuals to
discern a genuine insight into the mechanistic aspects (Sheiner and Ludden 1992).
More specifically, population models allow characterization of (a) mean pharmacoki-
netic/pharmacodynamic parameters, (b) extent of variability in these parameters and
the sources thereof (e.g. gender, age, disease, comedication), and (c) relationships
between pharmacokinetic (e.g. exposure) or pharmacodynamic (e.g. a biomarker)
variables and clinical efficacy and safety endpoints. These models can then be used
to simulate the outcomes of various trial designs under different assumptions. The
usefulness of modeling and simulation in the PK/PD-phase of drug development and
regulatory decision-making has been recognized (Holford 1990; Sheiner and Steimer
2000; Holford et al. 2000; Nestorov et al. 2001; Gobburu and Marroum 2001; Gob-
buru and Sekar 2002; Bhattaram et al. 2005; Burman et al. 2005). Exposure-response
models may, for example, be used to support the use of a drug in new target popula-
tions through bridging, dose adjustment or no need for dose adjustment in subpopu-
lations, new dose regimens, dosage forms and formulations, routes of administration,
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and minor product changes (FDA Guidance for Industry 2003). A biological marker
(biomarker) has been defined as a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention (Biomarkers Definition Work-
ing Group 2001). The most reliable way to assess the benefit and risk of a drug ther-
apy is through its effect on well-defined clinical endpoints. However, this approach
is sometimes impractical for the evaluation of long-term disease therapies and tri-
als that require a large number of patients. A biomarker may then be substituted
for clinical response, provided that it is reasonably likely to predict clinical benefit
(FDA 1997). However, the single most important use of biomarkers is the selection
of the dose range and doses for further investigation in the pivotal trials (Jadhav et al.
2004). To further facilitate the identification of optimal dosing regimens, the use of
clinical utility functions has been proposed (Sheiner and Melmon 1978; Eriksen and
Keller 1993; Graham et al. 2002; Jonsson and Karlsson 2005). Such functions serve
to evaluate important desirable and undesirable effects of a drug on the same scale,
under different assumptions of the relative severity of each outcome. In this way,
the observed or predicted clinical outcome of different drug therapies, or different
dosing regimens of the same drug, may be compared.

An appealing approach to building a statistical CTS system is found in (Westfall
et al. 2008). Their approach starts with a model with a rich probabilistic structure to
account for typical scenarios, using historical data where it is possible to validate the
inputs and outputs, with specific emphasis on the economical yet flexible input of
correlation structures. Here, patient responses are functions of underlying correlated
N(0, 1) clinical quantities; all distributional forms and dropout effects are determined
from these underlying values. Evaluation of trial success then follows from the analy-
sis of the simulated datasets. The goal is to generate realistic datasets having typical
correlation structures for multiple endpoint/timepoint data with, say p, endpoints
(safety, efficacy or both) indexed by j =1, ..., p, and T + 1 timepoints indexed by ¢
=0, ..., T, where t =0 can be the time of randomization of the patient. For patient i
ap(T +1)-vector of correlated N(0, 1) variates Z;;;, each of which may be thought of
as a latent indicator of the patient’s health relative to a population of similar patients,
for endpoint j and timepoint ¢. Observations will be considered to be independent
for different patients. Though, it is possible to include correlations, for instance, for
random center effects. Obviously, for each specific patient the timepoint data Zj,, ...,
Zj;r are correlated. For instance, the compound symmetry covariance structure model
can be expanded easily to accommodate time-series carryover effects in addition to
patient effects as Z;;; = VOS+/1—= O¢;j:, where S ~N(0, 1) is the patient effect and
&ijos - - -, €ij7 1s arealization of a unit variance AR(l) process with parameter p. For
simulation purposes, the parameters 6 and p must be specified. For multiple endpoint
data for patient and timepoint, it is suggested that the correlation between endpoints
is best left as unstructured. For each patient, the observations between endpoints at
different timepoints are correlated. There are a number of possibilities for defining
this structure, the most convenient and well-known is the Kronecker product model
used in multivariate longitudinal models (Westfall et al. 2008).

sogenstad@statogen.com



1 A Statistical Approach to Clinical Trial Simulations 11

Most commercially available clinical trial software systems use parametric input
into the systems. For instance, the exponential survival model is often used as input
model. Though, the exponential survival model is a rather unrealistic model since
it is assumed that the hazard rate function is constant over the entire observational
study period. The Weibull model is many times a better choice than the exponential,
but this model still has a monotonic hazard rate function, which might not be realis-
tic either. A more flexible approach is to use Royston-Parmar models (Royston and
Parmar 2002) that have great flexibility. Even better at times is to use mean structures
as input for the different endpoint*timepoint*treatment combinations. Such struc-
tures can be determined purely a priori from earlier phase data, suggested by PK/PD
models, or from studies on similar interventions. Survival analyses pose additional
questions. Standard methods such as the log-rank test and Cox models are efficient
when the hazards are proportional. This assumption is not always reasonable. The
non-proportional hazards assumption that is a potential difficulty with the Cox model,
could sometimes be handled in a simpler way, and the visualization of the hazard
rate function could be made easier, using the Royston—Parmar framework. In West-
fall et al. (2008), any types of distributions could be applied to the mean structures,
and there they effectively made use of a missing value, dropout and noncompliance
mechanism to generate ‘real world datasets’. Girard et al. (1998) developed a hierar-
chical Markov model for patient compliance with oral medications conditional upon
a set of individual-specific nominal daily dose times and individual random effects
that are assumed to be multivariate normally distributed. This model also has great
flexibility and allows descriptions of almost all possible compliance profiles.

1.5 Some Published Clinical Trial Simulations

Wathen and Thall (2008) presented a new approach to the problem of deriving an opti-
mal design for a randomized group sequential clinical trial based on right-censored
event times. They were motivated by the fact that, if the proportional hazards assump-
tion is not met, then a conventional design’s actual power can differ substantially from
its nominal value, and combined Bayesian decision theory, Bayesian model selec-
tion, and simulation to obtain a group sequential procedure that maintains targeted
false-positive rate and power, under a wide range of true event time distributions. At
each interim analysis, the method adaptively chooses the most likely model and then
applies the decision bounds that are optimal under the chosen model. A simulation
study comparing this design with three conventional designs showed that, over a
wide range of distributions, their proposed methods perform at least as well as each
conventional designs, and in many cases, it provides a much smaller trial.

Dragalin et al. (2010) presented a simulation study to compare new adaptive
dose-ranging design. The main goals in an adaptive dose-ranging study are to detect
dose-response, to determine if any doses meet clinical relevance, to estimate the dose-
response, and then to decide on the dose(s) (if any) to take into the confirmatory Phase
III. Adaptive dose-ranging study designs may result in power gains to detect dose-
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response and higher precision in estimating the target dose and the dose response
curve.

Kimko et al. (2000) simulated the anticipated results of a Phase III clinical trial
of the antischizophrenic drug, quetiapine, based on input-output and covariate dis-
tribution models developed using data collected in earlier Phase I and I trials. The
model development was performed using the NONMEM program with first order
conditional estimation (Beal and Sheiner 1992). The proposed trial design was a
double-blind, placebo-controlled, randomized, parallel group study of fixed-dose of
quetiapine in hospitalized schizophrenic patients, who received one of five doses of
quetiapine or placebo for a period of four weeks. The treatment was initiated after a
placebo run-in period followed by a two week step-wise dose titration period. The
executed study design was replicated by excluding individuals wrongly included
in the study, as they failed to meet the entry criteria. In addition, placebo respon-
ders identified during the placebo run-in period were replaced. A random dropout
algorithm using a multiplicative congruential method (such that the random number
generated is the remainder of a linear transformation of the previous number divided
by an integer) was used to simulate the high dropout rate observed in the earlier
Phase II study. Based on the Phase II study result, 70% of the patients assigned to the
placebo group, 60% assigned to the lowest dose group and 50% assigned to all other
dose groups were withdrawn from the study. Simulations were performed for 100
sets of 50 patients per treatment group. Adequacy of the model to describe the orig-
inal data was tested using sensitivity analysis and by comparing posterior parameter
distributions and posterior predictions from the simulated trial design to parameters
of the prior distribution and observed data. Dropout rates in the simulation and in
the Phase III trial were comparable. Comparison of the simulated results with actual
results obtained in the Phase III trial showed that the model adequately predicted
responses to quetiapine. However, it was found to be inadequate in predicting the
placebo response.

Clinical trial simulation for docetaxel was performed using pharmacoki-
netic/pharmacodynamic models previously developed from data obtained in earlier
open-label, non-randomized, Phase II clinical trials of docetaxel in subjects with
small cell lung cancer. The purpose of the simulation was to predict the influence of
dose on survival time and time to disease progression in a high-risk group in a planned
Phase 111 trial comparing doses of docetaxel of 100—125 mg/m? every three weeks.
Input-output and covariate distribution models were developed using the NONMEM
program. Hazard models were used to simulate the primary and secondary clinical
endpoints, death and disease progression, respectively. In addition, the execution
model included a separate hazard model for patient dropout. Different models were
tested and the Weibull distribution was selected based on the goodness of fit assessed
in the model-building phase of the analysis. A dose titration algorithm allowed for
a 25% dosage reduction in the event of severe toxicity for each treatment cycle. To
maintain consistency with study implementation, after two dosage reductions or if
disease progression occurred, the patient was withdrawn from the study. Simulations
were performed for 100 sets of subjects and the results were analyzed using SAS.
Adequacy of the model to describe the Phase II data was tested using a posterior
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predictive check of the following test quantities: number of deaths and progressions,
median survival time, I year survival, median time to progression, patient charac-
teristics at baseline, number of side-effects at the end of the first cycle, number of
treatment cycles per patient and total dose. Tabulated median and 95% confidence
intervals of simulated test quantities agreed well with those obtained from the orig-
inal data. In addition, 100 sets of 200 subjects per treatment group were simulated
under the Phase I1I trial design and test quantities were calculated. The results of the
Phase III trial simulation showed no clinical advantage of the higher docetaxel dose
on survival or time to disease progression in high-risk subjects with small cell lung
cancer. As a consequence of this analysis, it was determined that there would be no
further clinical studies to evaluate the effect of dose intensification in subjects with
small cell lung cancer.

1.6 Commercially Available Trial Design Software
Packages

Performing simulations with most currently available simulation tools is an invest-
ment of time, requiring custom programming and at times moving between one
software application to perform simulations and another application to visualize
simulations. There is a great need for even more efficient simulation systems that
facilitate interactive, real-time evaluation and iteration on simulation scenarios.

As indicated earlier, more adaptations give the investigator more flexibility in
identifying best clinical benefits of the test treatment under investigation. However,
multiple adaptive designs with more adaptations could be very complicated and
consequently, appropriate statistical methods for assessment of the treatment effect
may not be available and are difficult, if not impossible, to obtain. Thus, one of the
major obstacles for implementing adaptive design methods in clinical trials is that
the appropriate statistical methods are not well established with respect to various
adaptations. Though, some practical methods in this field are emerging (Gao et al.
2013; Pong et al. 2010). Current software packages such as SAS cannot be applied
directly and hence are not helpful here. Although there are some software available in
the marketplace such as ExpDesign Studio (http://www.ctrisoft.net), EastSurvAdapt
(Cytel Corporation), and ADDPLAN (http://www.addplan.com), which cover certain
types of adaptive trial designs, new software packages for adaptive design methods in
clinical trials are necessary to assist in implementing adaptive trial designs in clinical
trials (Wassmer and Vandemeulebroecke 2006). An overview of software available
for group sequential and adaptive designs can also be found in Herson (2009).

Some software (e.g., Certara, https://www.certara.com/software/; Lixoft, http://l
ixoft.com/) require PK/PD input as drivers for the simulation output. A well devel-
oped system is found with EAST 6 from Cytel Corporation that has a large variety
of parametric design choices. Another software that produces data with ‘flexible’

sogenstad@statogen.com



14 S. Ogenstad

statistical characteristics, which helps the decision making that statisticians typically
must make is developed by Westfall et al. (2010).

Concerning the description of virtual patients, i.e. the distribution of covariates in
a target population, general-purpose statistical packages can be employed. Note that,
since IO models usually include terms for covariate effects, the choice of methodol-
ogy for generating virtual subjects is often dependent on the software for IO model-
ing. Mouksassi et al. (2009) use the R package library GAMLSS, which facilitates
the simulation of demographic covariates specific to the targeted patient popula-
tions. Other authors (Chabaud et al. 2002) prefer to resample patients from existing
epidemiological databases rather than creating realistic virtual subjects.

The R software environment (by R Core Team 2014) has an excellent set of
tools for analyzing and visualizing simulation results in real time. The new RxODE
package facilitates quick and efficient simulations of ordinary differential equation
(ODE) models in R. RxODE provides an elegant, efficient, and versatile way to
specify dosing scenarios, including multiple routes of administrations within a single
regimen, sampling schedules, etc. It also enables simulations with between-patient
variability and minimizes the amount of custom coding required for pharmacometrics
simulations (Wang et al. 2015).

A system specifically designed for IO-modeling of data in this context are the
non-linear mixed-effect model program NONMEM (developed by Stuart L. Beal
and Lewis B. Sheiner in the late 1970s at UCSF for population pharmacokinetic
modeling). It is still widely used.

ADAPT (Biomedical Simulations Resource (BMSR) in the Department of
Biomedical Engineering at the University of Southern California) is a computa-
tional modeling platform developed for PK/PD applications. It is intended for basic
and clinical research scientists and is designed to facilitate the discovery, exploration
and application of the underlying pharmacokinetic and pharmacodynamic properties
of drugs, which includes an extensive library of models to choose from.

MATLAB (MathWorks) is a multi-paradigm numerical computing environment
and fourth-generation programming language. MATLAB allows matrix manipula-
tions, plotting of functions and data, implementation of algorithms, creation of user
interfaces, and interfacing with programs written in other languages, including C,
C++, C#, Java, Fortran and Python. MATLAB provides a software tool, the so-
called SimBiology, for the complete PK/PD workflow. Since Sim-Biology is based
on MATLAB, users can employ MATLAB in order to program their simulations.

Mathematica (Wolfram Research) is a quality symbolic computation system.
For clinical trial simulations SystemModeler is excellent for modeling and anal-
ysis throughout drug discovery, development, clinical trials, and manufacturing. The
flexible environment supports application areas such as systems biology, bioinfor-
matics, and more.

Mathematica and MATLAB are very different products. Mathematica focuses
on quality symbolic computation and features like unlimited precision arithmetic.
MATLAB focuses on high speed algorithms for numerical computation.
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1.7 Discussion

In the past few years, scientific journals covering clinical pharmacology and phar-
macokinetics and trials in later phases have published a large number of papers
related to CTS. The interest in CTS in statistical literature within statistical univer-
sity departments has been much lower. Still, statistics and statisticians are needed in
CTS activities. By writing this paper, we would like to stimulate more statisticians
to take an active part in applied modeling work and research related to CTS.

Some of the examples given have hopefully shown that even quite simple modeling
exercises can prove very useful. One task for the modeler is precisely that of finding
those questions where a limited amount of work is likely to give significant benefits.
It might be hard for some statistical scientists to accept that being too rigorous may
be harmful. The model need not be perfect. What matters is that the work is good
enough to help make the right decisions.

Even though practical modeling work may sometimes be “quick and dirty”, rigor-
ous statistical research is needed in the CTS area. We would especially like to point
out the need to apply and integrate different areas within statistics and to integrate
statistical results into other disciplines, such as pharmacometrics and pharmacoeco-
nomics.

CTS integrates expert knowledge in the relevant fields (primarily pharmacology
and medicine in the clinical phase) with new data in a structured process to create
quantitative models. The cooperation between different skills is thus essential. Some
modeling work can, of course, be done by a single individual. In many situations,
however, the greatest benefits are likely to result from a joint collaboration with
several skills working in concert (e.g., Biomarkers Definition Working Group). What
skills to include in the modeling team is, of course, depending on the modeling
questions. Good organization is critical both internally in the modeling team and
for the team’s relations with decision makers and experts from different parts of the
research organization.

CTS aims at optimizing a clinical development program. This program, however,
is not totally isolated from the rest of drug development and commercialization.
What is ‘optimal’ in clinical development depends on factors such as the medical
need for a new treatment, its commercial value, the regulatory requirements, and
the ability to find patients and produce tablets in time for the clinical trials etc.
CTS should therefore not be seen as separate from other modeling activities. Pre-
clinical, epidemiological and commercial models could provide useful input to CTS.
The results of CTS, on the other hand, may be of great value for predicting market
penetration and sales.

Execution models are used to examine the influences of protocol deviations on
study outcomes. When implemented as a part of a clinical trial simulation, they allow
“virtual” clinical trials to the run under varying conditions, from simple errors in data
gathering to complex combinations of protocol deviations that emulate real-world
situations. Thus, execution models arc powerful tools for identifying weaknesses or
limitations in a proposed study design, which may be anticipated, avoided or resolved
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in order to increase the robustness of the study design prior to implementation of the
actual clinical study. As such, they are an integral component of clinical trial sim-
ulation and essential tools for identifying weaknesses or limitations in a proposed
study design, which may be anticipated, avoided or resolved in order to increase the
robustness of the study design prior to implementation of the actual clinical study.
As such, they are an integral component of clinical trial simulation and an essential
tool in clinical trial design. Execution models for protocol departures do not neces-
sarily require data to be identified, except for dropout. Many trials can be performed
in simulators that are just too risky in real life and they can be repeated multiple
times. Simulators tend to prevent trial failures or overpowered studies by their abil-
ity to point what part of the experiment is the most sensitive to protocol departures.
Indeed clinical trial simulation provides an invaluable tool to prospectively force
experimental study designs to the point of failure.
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