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Chapter 2 ®)
Generalized Tests in Clinical Trials Check or

Stephan Ogenstad

2.1 Introduction

Conventional statistical methods do not provide exact solutions to many statistical
problems, such as those arising in ANOVA, mixed models and multivariate analysis
of variance (MANOVA), especially when the problem involves a number of nuisance
parameters. As a result, users of these methods often resort to approximate or asymp-
totic statistical methods that are valid only when the sample size is large. With small
or ordinary sample sizes, such methods often have poor performance (Weerahandi
1994). The approximate and asymptotic methods may lead to misleading conclusions
or may fail to detect truly significance results from clinical studies.

Classical statistical tests may be insensitive to a wide range of situations occurring
commonly in practice, particularly when the effect of the factor under study is het-
erogeneous. All statistical procedures are based on some distributional assumptions.
In addition, many statistical procedures (e.g. ANOVA, ANCOVA) use the F-test and
are based on the assumption of homoscedasticity (equal variances) and relate to the
validity of the often convenient assumption that the structure of any one part of a
dataset is the same as any other part. From experience, this assumption is seldom
true when responses are different in the separate treatment groups. The assump-
tion of equal variances is usually made for simplicity and mathematical ease rather
than anything else. The outcome of using conventional statistical models when the
assumptions are not reasonable can lead to serious consequences. In many situa-
tions, these procedures can fail to detect significant therapeutic effects even when
available data provide sufficient evidence that the effects are present. In other appli-
cations, the conventional statistical models sometimes lead to incorrect conclusions,
implying that the therapeutic results are significant when they are actually not (Blair
and Higgins 1980; Brownie et al. 1990; Graubard and Korn 1987).
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26 S. Ogenstad

For instance, in the classical handling of the statistical problem in one-way
ANOVA, it is assumed that the population variances are all equal. This is not really
a natural assumption. In fact, it is often seen in most applications that the variances
tend to be substantially different especially when the mean responses are substantially
different. From simulation studies, it has also been observed that the assumption of
equal variances is much more serious than the assumption of normally distributed
populations, in that the former has the greater chance of leading to wrong conclu-
sions. The classical ANOVA problems that rely on the equal variances assumption
can dramatically reduce the power of the tests. Moreover, the magnitude of the lack
of power problem of the tests based on the equal variance assumption increases
with the number of treatments being compared. We also want to point out that in
most applications, despite a common belief, it is not possible to transform data to
achieve the approximate normality and equal variances simultaneously. The p-value
produced from the classical approach is valid only if the variances are equal, and the
test is not appropriate if the variances are significantly different.

In the analysis of repeated measures, it is also, assumed that all treatment groups
have equal variances. While there is no serious problem when the assumption is rea-
sonable, the assumption can lead to serious erroneous conclusions when the variances
are substantially different. Moreover, in situations of higher-way ANOVA under an
incorrect heteroscedasticity assumption, one is more prone to draw misleading con-
clusions. For instance, one can be misled by the classical F-test to conclude that
a certain factor of an ANOVA is significant when in reality a different factor is
significant.

Extensions have been made to the classical methods in repeated measures involv-
ing mixed models, MANOVA, and growth curves, in particular. Repeated measures
and growth curves models are in fact special classes of mixed models. The classical
approach to solving these problems provides exact solutions to only a fraction of
the problems. Conventional methods alone do not always provide exact solutions
to even some simple problems. For instance, in the univariate analysis of variance,
the classical approach fails to provide exact tests when the underlying population
variances are unequal. In some widely used growth curve models, there are no exact
classical tests even in the case of equal variances. As a result, users of these methods
often resort to asymptotic results in search of approximate solutions even when such
approximations are known to perform rather poorly with moderate sample sizes.

Solutions to the statistical problems are addressed as extensions, as opposed to
alternatives, to conventional methods of statistical inference. In Weerahandi (1994),
each class of problems is started with a simple model under special assumptions
that are necessary for the classical approach to work. After discussing solutions
available for such special cases, these assumptions are relaxed when they are con-
sidered to be too restrictive or unreasonable in some applications, especially when
they are known to have poor size (Type I error) or power performance. For instance,
in fixed effects ANOVA, the problem is first considered under the homoscedastic
variance/covariance assumption and then later the assumption is dropped.

The generalized methods are exact in the sense that the tests and the confidence
intervals are based on exact probability statements rather than on asymptotic approx-
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2 Generalized Tests in Clinical Trials 27

imations. This means that inferences based on them can be made with any preferred
accuracy, provided that assumed parametric model or other assumptions are cor-
rect. To make this possible, solutions to problems of testing various hypotheses
are presented in terms of p-values. There is readily available computer software to
implement these exact statistical methods. Exact p-values and confidence intervals
obtained with extended definitions also serve to provide excellent approximate solu-
tions in the classical sense. From simulation studies reported in the literature, type I
error and power performance of these approximations are usually much better than
the performance of more complicated approximate tests obtained by other means.

By exact generalized inference, we mean various procedures of hypothesis testing
and confidence intervals that are based on exact probability statements. Weerahandi
(1994) uses the term ‘exact’ rather than ‘generalized’ methods because these meth-
ods are not approximations to the problems but exact solutions. Here we confine our
attention to the problems of making inferences concerning parametric linear models
with normally distributed error terms. In particular, we do not address exact non-
parametric methods that are discussed, for instance in Good (1994) and Weerahandi
(1994). The purpose of this chapter is to provide a brief introduction to the notions and
methods in the generalized inference that enable one to obtain parametric analytical
methods that are based on exact probability statements.

There is a wide class of problems for which classical fixed-level tests based on
sufficient statistics do not exist, and there are simple problems in which conventional
fixed-level tests do not exist. For instance, consider the mean . and variance o2 in a
normal distribution N(u, o) and let us assume that the parameter of interest is the
second moment of the normal random variable X about a point other than the mean,
say k, then the parameter of interest is

E(X —k)? = p?+0% = 2ku + k%

Classical tests are not available for this parameter unless k = (Weerahandi
1994). If instead, the parameter of interest is @ = +ko2, then it is possible but not
easy to find a test statistic whose value and distribution depends on the parameters
only through the parameter of interest, since either u or o can be considered as the
nuisance parameter.

Actually, these kinds of problems are prevalent even with widely used linear
models. For instance, in the problem of comparing the means of two or more normal
populations, exact fixed-level tests and conventional confidence intervals based on
sufficient statistics are available only when the population variances are equal or
when some additional information is available about the variances. The situation
only gets worse in more complicated problems such as the two-way ANOVA, the
MANOVA, mixed models, and in repeated measures models including crossover
designs and growth curves.

In the application of comparing two regression models, Weerahandi (1987) gave
the first introduction to the notion of generalized p-value and showed that itis an exact
probability of an unbiased extreme region, a well-defined subset of the sample space
formed by sufficient statistics. Motivated by that application, Tsui and Weerahandi
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(1989) provided formal definitions and methods of deriving generalized p-values.
In a Bayesian treatment, Meng (1994) introduced a Bayesian p-value, as a posterior
predictive p-value, which is, under the noninformative prior, numerically equivalent
to the generalized p-value. Weerahandi and Tsui (1996) showed how Bayesian p-
values could be obtained for ANOVA-type problems that are numerically equivalent
to the generalized p-values.

As discussed in detail in Weerahandi (1994), exact probability statements are not
necessarily related to the classical repeated sampling properties. In special cases, the
former may have such implications on the latter, but this is not something that one
should take for granted. For instance, in applications involving discrete distributions,
often we can compute exact p-values, but not exact fixed-level tests. Rejecting a
hypothesis based on such p-values, say at the 5% level if p<0.05, does not imply
that the false positive rate in repeated sampling is 5%. Simply, such a p-value is a
measure of false positive error and hence we can, in fact, reject the null hypothesis
when it is less than a certain threshold. However, in most applications, fixed-level
tests based on p-values, including the generalized p-values, do provide excellent
approximate fixed-level tests that are better than asymptotic tests. Indeed, consistent
with simulation studies reported in the literature (Gamage and Weerahandi 1998;
Burdick et al. 2005), generalized tests based on exact probability statements tend to
outperform, in terms of type I error or power, the more complicated approximate
tests. Moreover, in many situations, type I error of generalized tests do not exceed
the intended level. Therefore, procedures based on probability statements, that are
exact for any sample size, are always useful, regardless of if we insist on repeated
sampling properties or not. Also to those who insist on classical procedures, and
anyone who has difficulties with the meaning of exactness, we can consider the
generalized approach as a way of finding good approximate tests and confidence
intervals, which are expected to perform better than asymptotic methods. We can
benefit from the generalized approach to statistical inference, since it is an extension
of the classical approach to inference as opposed to an alternative, providing solutions
to a wider class of problems.

2.2 Test Variables and Generalized p-Values

Classical p-values as well as testing at a fixed nominal level, are based on what is
known as test statistics. Basically, a test statistic is a function of some special prop-
erties of some observable dataset, that will distinguish the null from the alternative
hypothesis. The function should not depend on any unknown parameters to qualify
to be a test statistic. In the classical methodology of testing of hypotheses, this is an
important requirement since, given a dataset, we should be able to compute such a
statistic and compare against a critical value. Test statistics provide a convenient way
of constructing extreme regions, on which p-values and tests can be based. But, this
methodology only works in a very limited set of conditions (Weerahandi 1994). For
instance, in the problem of sampling from a normal population, it is not clear how a
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test statistic could be constructed if the parameter of interest were a function such as,
0 =i +02. The Behrens-Fisher problem is a well-known example of a circumstance
where a test statistic based on sufficient statistics does not exist when the variances
are not assumed to be equal. This limitation extends well into all types of linear
models including ANOVA, regression models, and all types of repeated measures
problems.

Tsui and Weerahandi (1989) introduced the notion of test variables in the context
of generalized inference. Test variables provide a convenient way of defining extreme
regions as they play the role of test statistics in the generalized setting since test
variables are extensions of test statistics.

A generalized p-value is an extension of the classical p-value, which except in
a limited number of applications, provides only approximate solutions. Tests based
on generalized p-values are exact statistical methods in that they are based on exact
probability statements. While conventional statistical methods do not provide exact
solutions to such problems as testing variance components or ANOVA under unequal
variances, exact tests for such problems can be obtained based on generalized p-
values (Gamage et al. 2013; Hamada and Weerahandi 2000; Krishnamoorthy et al.
2006). In order to overcome the shortcomings of the classical p-values, Tsui and
Weerahandi (1989) extended the classical definition so that one can obtain exact
solutions for such problems as the Behrens—Fisher problem and testing variance
components. This is accomplished by allowing test variables to depend on observable
random vectors as well as their observed values, as in the Bayesian treatment of the
problem, but without having to treat constant parameters as random variables.

To provide formal definitions, consider a random vector Y with the cumulative
distribution function F(y; &), where € =(0; 8) is a vector of unknown parameters.
0 is the parameter of interest and 8 is a vector of nuisance parameters. Let y be the
observed value of the random vector Y. An extreme region with the observed sample
point on its boundary can be denoted as C(y; 6, 8). The boundary of extreme regions
could be allowed to be any function of the quantities y, 6, and 8§, and therefore, we need
to allow test variables to depend on all these quantities. However, an extreme region
is of practical use only if its probability does not depend on &. Furthermore, a subset
of the sample space obtained by more general methods should truly be an extreme
region in that its probability should be greater under the alternative hypothesis than
under the null hypothesis, as defined more formerly below.

Definition. A generalized test variable is a random variable of the form T =T(Y;
Yy, £) having the following three conditions:

1. The observed value t =T (y; y, §) of T does not depend on unknown parameters.
2. The probability distribution of T" does not depend on nuisance parameters.
3. Givent,yand §, P(T <t;6) is a monotonic function of 6.
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2.3 Generalized Confidence Intervals

The classical approach to interval estimation suffers from more difficulties than that
of hypothesis testing. Even when the problem does not involve nuisance parameters
and there are exact confidence intervals, in some applications, they lead to results
that contradict the very meaning of confidence. Both Ghosh (1961) and Pratt (1961)
independently provided a very simple example of a uniformly most accurate confi-
dence interval having highly undesirable properties, and connects two fundamental
performance measures in confidence set estimation. Weerahandi (1994) showed how
such undesirable confidence intervals can be avoided by expanding the class of inter-
vals available to choose from. Just as in the case of testing of hypotheses, here we
extend the class of available procedures for any given problem by insisting on exact
probability statements rather than on sampling properties. This will enable us to solve
such problems as the Behrens-Fisher problem for which exact classical confidence
intervals do not exist. As in the Bayesian approach, the idea is to do the best with
the observed data at hand instead of discussing other samples that could have been
observed, was the process to be repeated. The generalized confidence intervals are
nothing but the enhanced class of interval estimates obtained from exact probability
statements with no special regard to repeated sampling properties that are of little
practical use (Weerahandi 1994, 2004).

The definition of a confidence interval is generalized so that problems such as
constructing exact confidence regions for the difference in two normal means can be
undertaken without the supposition of equal variances. Under certain conditions, the
extended definition is shown to preserve a repeated sampling property that a practi-
tioner expects from exact confidence intervals. The proposed procedure can also be
applied to the problem of constructing confidence intervals for the difference in two
exponential means and for variance components in mixed models. With this descrip-
tion, we can carry out fixed level tests of parameters of continuous distributions on
the basis of generalized p-values.

Thus, Weerahandi (1993) extended the conventional definition of a confidence
interval in such a way that an applicably useful repeated sampling property is pre-
served. The research into this field was prompted by the need of exact confidence
intervals in statistical problems involving nuisance parameters. For instance, even
for a simple problem such as constructing confidence intervals for the difference in
means of two exponential distributions, exact confidence intervals based on sufficient
statistics are not available. The possibility of extending the definition of confidence
intervals was suggested by the existence of p-values in this type of problem. Weer-
ahandi (1987) used an extended p-value to compare two regressions with unequal
error variances. The usefulness of generalized p-values explicitly defined by Tsui and
Weerahandi (1989) is evident from a number of studies and applications, including
those by Thursby (1992), Zhou and Mathew (1994), and Koschat and Weerahandi
(1992).

To generalize the definition of confidence intervals, we first examine the properties
of interval estimates obtained by the conventional definition. Consider a population

sogenstad@statogen.com



2 Generalized Tests in Clinical Trials 31

represented by an observable random variable Y. Let Y =(Y, Y, ..., Y,,) be a
random sample of n observations from the population. Suppose the distribution of
the random variable Y is known except for a vector of parameters € = (6, 8), where 6
is a parameter of interest and 8 is a vector of nuisance parameters. We are interested
in finding an interval estimate of # based on observed values of Y. The problem is
to construct generalized confidence intervals of the form [A(y), B(y)] C ®, where
® is the parameter space and A(y) and B(y) are functions of y, the observed data.

In the classical approach to interval estimation we find two functions of the observ-
able random vector, say A(Y) and B(Y) such that the probability statement

PIA(Y) =60 < B(Y)] =, 2.1

is satisfied, where y is specified by the desired confidence level.

If the observed values of the two statistics are a = A(y) and b = B(y), then [a, D] is
a confidence interval for 6 with the confidence coefficient y . For instance, if y =0.95,
then the interval [a, b] obtained in this manner is called a 95% confidence interval.
If in the situation of interval estimation of the parameter 6, the interval could be
constructed a large number of times to obtain new sets of observation vectors y, then
the confidence intervals obtained using the formula (2.1) will correctly include the
true value of the parameter 6 95% of the times. After a large number of independent
situations of setting 95% confidence intervals for certain parameters of interest, we
will have correctly included the true value of the parameter in the corresponding
intervals 95% of the times. It, of course, has no implication about the coverage
based on the sample that we have actually observed. Indeed, Pratt (1961), Ghosh
(1961), and Kiefer (1977) provide examples where the current intervals violating the
very meaning of confidence. In particular, they showed that in those applications the
so-called exact confidence intervals do not contain the parameters at all. The only
thing truly exact about a confidence interval is the probability statement on which
the interval is based. If indeed repeated samples can be obtained from the same
experiment, then the claimed confidence level will no longer be valid and in the
limit, the value of the parameter will be known exactly, so that statistical inference
on the parameter is no longer an issue. In view of this, Weerahandi (1993) searched
for intervals that would enhance the class of solutions and extended the class of
candidates eligible to be interval estimators by insisting on the probability statement
only. This will allow us to find interval estimates for situations where it is difficult or
impossible to find A(Y) and B(Y) satisfying (1) for all possible values of the nuisance
parameters. He further showed how this can be accomplished by making probability
statements relative to the observed sample, as done in the Bayesian approach, but
without having to treat unknown parameters as random variables. More precisely, we
can allow A() and B() to depend on the observable random vector Y and the observed
data y both. When there are a number of parameters of interest, in general, we could
allow subsets of the sample space possibly depending on the current sample point y
of Y.

Such intervals Weerahandi referred to as generalized confidence intervals. The
construction of such regions can be facilitated by generalizing the classical definition
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of pivotal quantities. A random variable of the form R =R(Y; y, €), a function of
Y, y, and &, is said to be a generalized pivotal quantity if it has the following two
properties:

Property A: The probability distribution of R does not depend on unknown
parameters.

Property B: The observed pivotal, r,,; =R(y; y, &) does not depend on nuisance
parameters 8.

Property A allows us to write probability statements leading to confidence regions
that can be evaluated regardless of the values of the unknown parameters. Property
B ensures that when we specify the region with the current sample point y, then we
can obtain a subset of the parameter space that can be computed without knowing
the values of the nuisance parameters.

Suppose we have constructed a generalized pivotal R =R(Y; y, &) for a parameter
of interest and we wish to construct a confidence region at confidence coefficient y .
Consider a subset C,, of the sample space chosen such that

P(ReC))=y. (2.2)

The region defined by (2.2) also specifies a subset C(y; ) of the original sample
space satisfying the equation P(Y € C(y;0)) = y. Unlike classical confidence
intervals, this region depends not only on y and 6 but also on the current sample
point y. With this generalization, we can obtain interval estimates on 6 relative to the
observed sample with no special regard to samples that could have been observed
but were not. Although the generalized approach shares the same philosophy of the
Bayesian approach that the inferences should be made with special regard to the data
athand, here we do not treat parameters as random variables and hence the probability
statements are made with respect to the random vector Y. Having specified a subset
of the sample space relative to the current sample point, we can evaluate the region
at the observed sample point and proceed to solve (2.2) for 8 and obtain a region ®,
of the parameter space that is said to be a 100y % generalized confidence interval for
o if it satisfies the equation

O.(r) = {0 € OIR(y;y.§) € Cy ),

where the subset C,, of the sample space of R satisfies Eq. (2.2).

It should be reemphasized that generalized confidence intervals are not alter-
natives, but rather extensions of classical confidence intervals. In fact, for a given
problem there is usually a class of confidence intervals satisfying the probability
statement (2), a feature of classical intervals as well. Weerahandi (1994) discussed
how the choice of appropriate generalized pivotals could be facilitated by invoking
the principals of sufficiency and invariance. Even after we have obtained a particular
pivotal quantity we could construct a variety of confidence regions. Depending on
the application, a left-sided interval, a right-sided interval, a two-sided interval sym-
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metric around the parameter, the shortest confidence interval, or some other interval
might be preferable.

Comparing Two Normal Populations

In order to demonstrate the approach, we will show the case of comparing two normal
populations. In the analysis of two-sample data, it is common to choose the #-test
statistic to evaluate equality of the distributions. The test statistic is derived under the
assumption of equal variances and independent normally distributed observations.
We start by deriving the test statistic under this assumption, and later we derive a test
variable when equality of variances is no longer assumed.

Let Xy, ..., X,, be independent observations from a normal distribution N (i, , sz),
andletYy,...,Y,, beindependent observations from a normal distribution N (1, af).
Then X, Y, S2, and S are the maximum likelihood estimators of ju,, fty, o7, and
ayz, respectively. Since X,Y, S_f, and S)z_ are complete sufficient statistics for the
parameters of the two distributions, all inferences about the parameters can be based
on them. The four statistics are independent, and their distributions are given by

2 2
— o, — o,
X ~ Ny, =), Y ~N(uy, —),
m n
ms; 2 ns; 2
0_73 Am—1> 07‘2 Xn—1-
Under the assumption of equal variances (02 = o2 = o?), inferences about the

parameters can now be made on the basis of the complete sufficient statistics, X,Y,
and

§2 — S X = X2+ Y (Y — ) _ mS; +nS;

m+n m+n

and

(m +n)S? 2

o2 m+n—2"

The parameter of primary interest is A = p, — i, and the hypotheses can be
written as

Hy: A <OversusH,: A >0
or

Hy:py < pyversus Hy @ iy > [y,
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The family of joint distributions of X, ¥, and $? is both location- and scale-
invariant, so we can reduce tlle pro_blem to tests based on the statistic 7 = (X —Y)/S.
Because the distribution of X — Y can be standardized as

X—-Y
~ N(¢, 1)

(o +

3=
S =

the distribution of T is given by

TVmnim+n—2)

~ tm+n—2¢,
vJm+n

that is, the noncentral 7-distribution with m +n — 2 degrees of freedom and the
noncentrality parameter ¢ = A /[o+/1/m + 1/n]. The p-value is

P(T>X-=Y)s'A=0)=1— Gpin o(X = Y)s™'\/mn(m +n —2)/(m +n)),

where s is the observed pooled standard deviation, and Gy,.,—> is the cumulative
distribution function of Student’s ¢-distribution with m +n — 2 degrees of freedom.

It is well known that the #-test is the uniformly most powerful unbiased test for
the situation above. The Wilcoxon rank-sum test is almost as efficient under these
conditions (Lehmann 1975; Hodges and Lehmann 1956). If the distributions are
heavy-tailed, the Wilcoxon rank-sum test is a more efficient test. When the alternative
involves a change in scale as well as in location F,(t) = F,((t — A)/o), then both
these tests may be inefficient.

When the variances are not equal we are still interested in the inference about the
difference A = p, — py. This problem has no exact fixed-level conventional test
based on the complete sufficient statistics (Linnik 1968; Weerahandi 1994).

For instance, consider constructing interval estimates based on functions of the
observed data. The difference in sample means is location-invariant, and its distri-
butionis X — Y ~ N(A,02/m + o, /n). The generalized pivotal quantity

2.2 2 2.2 2
_ 02s2/(mS2) +o0zs2/(nS?)
R=X-Y—-A) 2= A A J
o2/m+0o2/n
can generate all invariant interval estimates ‘similar’ in 0’x2 and 03. Furthermore, let
X-Y—-A
z=-2"122% vy —msed ¥, =nsto?

[o2/m+02/n

where Z ~ N(0, 1), ¥, ~ x2_,,and ¥, ~ x?_, are all independent random vari-
ables. Moreover, the random variables Y, + Y, ~ Xr%, mpand B =Y, /(Y +Y,) ~
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Beta[(m — 1)/2,(n — 1)/2], and Z are also independently distributed. The pivotal
quantity now becomes

R=2Z/[s2/Y+s2/Y, = Z(Y, + Yy)\/sg/B +52/(1 = B).

Interval estimates of A based on R can be obtained from probability statements
about R. The cumulative distribution function of R can be expressed as

P(R<r}=P T<r% — EG 7rL_2
- T\ sE/B+sZ/—B)| " s2/B+s2/(1- B)

where G, + , — » is the cumulative distribution function of 7 and the expectation, E,
is taken with respect to the beta random variable B.
The constant ¢, = ¢, (s2, sg) needs to be found to satisfy

EG m+n—2 _
2\ 2B s/ —B) | T

A 100y% one-sided generalized confidence interval of A s
[(X—Y)—cy(sf,sg), oo]. A symmetric confidence interval about the point

estimate (X — Y) of A is

(X = Y) = cupyp(s.52) < A < (X = Y) + €y (s, S)2,)

x° Py

(Ogenstad 1998; Weerahandi 1994).

2.4 Ilustrations

One-Way ANOVA Comparing Three Groups
Suppose that we have a dataset such that for comparing the mean effects of two active
treatments (B and C) and a placebo (A). As can be experienced from analyzing a
number of datasets, it is common that the variability in responses will increase with
increasing mean levels. Let us say that after a preliminary review of the data and the
figure we produced below (Fig. 2.1), based on equal sample sizes in the treatment
groups, our ‘intuition’ tells us that the treatment means are significantly different.
Although these data were indeed generated from normal populations with unequal
means and variances, application of the classical F-test will not support our ‘intuition’
in this case at all, because the p-value of the usual F-test is as large as 0.16. Using
XPro (X-Technologies, Inc.), a software that calculates exact p-values, we compute
the p-value for testing the equality of treatment means under the more reasonable
assumption of unequal variances. The XPro Software produces a p-value thatis 0.043,
which is in line with the impression we get from the figure that we constructed. The
discrepancy in p-values in this example is quite dramatic. It clearly demonstrates
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12.0

115

11.0

Mean + SE

10.5

10.0

9.5
A B C

Treatment Group

Fig. 2.1 Treatment group means+standard errors, based on equal sample sizes in the treatment
groups

the serious weakness of the classical F-test in the presence of heteroscedasticity.
Because the test ignores the problem of heteroscedasticity, the classical F-test fails
to detect significant differences in treatments, despite the fact that the data provides
sufficient information to do so. The complete ANOVA table to this illustration can
be found in Appendix. As a note, the F-test is even more unreliable if the sample
sizes in the treatment groups are different.

One-Way ANOVA Comparing Seven Groups

Although, based on equal sample sizes in the treatment groups, the treatment effects
to the naked eye are quite different (Fig. 2.2), the p-value when applying the classical
ANOVA to test the null hypothesis of equal means against the alternative hypothesis
that not all means are equal is 0.11, which is not statistically significant at the 5% sig-
nificance level. With the generalized F-test, the p-value without the equal variances
assumption is 0.0098, which shows a very different outcome.

Repeated Measures Under Heteroscedasticity

We will now show an example of hemodynamic monitoring, which has long formed
the cornerstone of heart failure (HF) and pulmonary hypertension diagnosis and
management. There is a long history of invasive hemodynamic monitoring initially
using pulmonary artery (PA) pressure catheters in the hospital setting, to evaluate the
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Fig. 2.2 Treatment group means + standard errors, based on equal sample sizes in the treatment
groups

utility of anumber of implantable devices that can allow for ambulatory determination
of intracardiac pressures. Although the use of indwelling PA catheters has fallen out
of favor in a number of settings, implantable devices have afforded clinicians an
opportunity for objective determination of a patient’s volume status and pulmonary
pressures. Some devices, such as CardioMEMS’ and thoracic impedance monitors
present as part of implantable cardiac defibrillators, are supported by a body of
evidence that show the potential to reduce HF-related morbidity and have received
regulatory approval, whereas other devices have failed to show benefit and, in some
cases, harm (Davey and Raina 2016).

We will consider potential data on pulmonary artery pressure where patients have
been placed on one of four treatments (G = 4) to bring down the PA pressure. The
patients have five scheduled visits at weeks 1, 2, 3, 4, and 5 with their investigator.
Shown in Fig. 2.3 are bar graphs reflecting the arithmetic means, based on equal
sample sizes in each group, with standard errors of a hypothetical dataset of normally
distributed observations that was generated by simulating the following model
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Fig. 2.3 Treatment group means+standard errors, based on equal sample sizes in the treatment
groups and weeks

Yigy = Og + Br + Yo + Qi) + Eigyrs

where t =1, ..., 5,i(g)=1, ..., ng, g=1, ..., 4. 0(y is the random effect due to
among-subject variation, 8, g=1, ..., 4 are the treatment effects, 8;,t =1, ..., 5 are
effects due to visits, y,, are their interactions, and ¢;; are the residual terms.

Extending the usual assumption about variance components to possibly unequal
group variances, we now have

i) ~ N0,0,).  €igy ~ N0, 0,),
wheret =1, ...,5,i(g)=1,...,ng, g=1, ..., 4.

Although the data seems typical in a repeated measures design, a closer look at
the data reveals that the treatment group variances, in this case, are substantially
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Table 2.1 Classical analysis of variance results

ANOVA table

Source DF SS MS F-value P-value
Weeks 4 86.8247 21.7062 1.289 0.284
Treatments 3 110.992 36.9972 2.137 0.136
Within 16 276.997 17.3123

Treatment

Treatment x 12 135.048 11.254 0.668 0.775
Weeks

Error 64 1078.08 16.845

Total 99 1687.94

different, which is evident in Fig. 2.3. Obviously, in this application, it is not reason-
able to assume that the variances are equal. But should it make any difference to our
conclusions whether or not the assumption is reasonable? To examine this, let us first
ignore the fact that variances are different and apply the classical ANOVA as usually
done by most people. The ANOVA table (Table 2.1) obtained by applying formulas
for classical repeated measures analysis for the case of homoscedastic variances is
shown below.

According to the p-values appearing in the ANOVA table, none of the effects
including the treatment effect are significant. Now we will drop the equal variances
assumption and retest the hypothesis that there is no difference in the mean PA pres-
sures between the different treatments. The p-value for testing the difference between
the treatments then becomes 0.0009. This means that the difference between the
treatments is highly significant despite what the classical ANOVA suggested. Usu-
ally milder assumptions make the p-value of a test larger and power of a test smaller.
But here the assumption of equal variances is so unreasonable that the p-value under
the assumption of equal variances is substantially larger. This illustration clearly
displays the reduction of the power of classical F-tests under heteroscedasticity.

2.5 Statistical Software

XPro computes exact p-values for testing hypotheses and computes confidence inter-
vals based on exact probability statements. This becomes particularly important when
one is using small or unbalanced data. The assumptions upon which standard methods
are based are then typically biased, resulting in unrealistic p-values and confidence
intervals. The software supports the exact inference in various linear models. It has
been proven to be able to detect significant and nonsignificant experimental results
early, even with small sample sizes. XPro procedures are complimentary to such
program as StatXact which specialize in exact non-parametric methods, such as
those dealing with contingency tables and categorical data. Most software programs
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provide exact parametric methods only under the assumption of homoscedasticity
in the ANOVA. In addition to such classical procedures, XPro provides procedures
based on milder assumptions. To make this possible XPro performs high dimensional
numerical integrations and solves highly nonlinear equations. The complexities of
the underlying formulas make the problem of computing exact p-values and confi-
dence limits very tedious. XPro makes use of efficient algorithms tailor made for
exact inferences in linear models and provides an easy to use interface that facilitates
all necessary analyses without passing the burden of any such numerical methods to
the user. The methods used are based on Weerahandi (1994). P-values and confidence
intervals, based on exact statistical calculations, are provided for a large number of
following statistical procedures, models, and relationships.

As mentioned, StatXact (Cytel Corporation), is used for a host of nonparametric
statistical procedures and sample size determination, and LogXact (Cytel Corpora-
tion), for the construction of logistic and Poisson regression models. Both StatXact
and LogXact allow the user to select exact, Monte Carlo, or regular asymptotic meth-
ods of calculating p-values and confidence intervals. If exact methods take too long
or are unavailable because of computer memory limitations, the user may select
Monte Carlo techniques. Monte Carlo results are often very close to those produced
by exact methods. XPro likewise provides the user with a Monte Carlo option for the
majority of its procedures. It is generally used under the same conditions mentioned
above.

Appendix

One-way ANOVA table

Sample sizes and MLEs of parameters

Column Sample size Sample mean Sample variance
A 20 10.0752 0.237953

B 17 10.6838 1.08007

c 19 11.0419 5.66803

ANOVA Table

Source DF SS MS F-value
Treatment 2 9.32091 4.66455 1.88988
Error 53 130.813 2.46817

Total 55 140.142

Testing the Equality of All Means

Classical F-Test
P-value under the equal variances assumption: 0.161

Generalized F-Test
P-value without the equal variances assumption: 0.043
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